Calcul de l'intégrale de Dirichlet

Introduction

L'objectif de ce problème est de démontrer la convergence de l'intégrale de Dirichlet

$$I = \int_0^{+\infty} \frac{\sin(t)}{t} \, \mathrm{d}t$$

et de calculer sa valeur en utilisant des intégrales à paramètre.

Dans tout le problème, on considère la fonction $f:[0,+\infty[\times]0,+\infty[\to\mathbb{R}$ définie par

$$\forall (x,t) \in [0,+\infty[\times]0,+\infty[,\quad f(x,t) = \frac{\sin(t)}{t} \mathrm{e}^{-xt}.$$

On définit également la fonction réelle d'une variable réelle F par

$$F: x \mapsto \int_0^{+\infty} f(x, t) \, \mathrm{d}t.$$

I. Préliminaires

Dans cette partie, on établit quelques résultats que nous utiliserons dans la suite du problème.

1. Dans cette question, on vérifie que F est définie sur $[0, +\infty[$. On considère l'intégrale

$$J = \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} dt.$$

- a) Soit x > 0. Montrer que la fonction $t \mapsto f(x, t)$ est intégrable sur $]0, +\infty[$.
- **b)** Montrer que l'intégrale *J* est convergente.
- c) En déduire que l'intégrale I est convergente.
- **2.** Soit $x \in \mathbb{R}$. Dans cette question, on détermine une primitive de la fonction $t \mapsto \sin(t)e^{-xt}$.
 - a) Déterminer une primitive sur \mathbb{R} de la fonction $t \mapsto e^{(i-x)t}$.
 - **b)** Déduire de la question précédente que la fonction $t \mapsto u(x, t)$ définie par

$$\forall t \in \mathbb{R}, \quad u(x,t) = -\frac{x\sin(t) + \cos(t)}{1 + x^2} e^{-xt}.$$

est une primitive sur \mathbb{R} de la fonction $t \mapsto \sin(t)e^{-xt}$.

3. Montrer que $|\sin(t)| \leq |t|$ pour tout $t \in \mathbb{R}$.

II. Calcul de F(x) pour x > 0

Dans cette partie, on détermine un expression explicite de F sur $]0, +\infty[$.

- **1. a)** Montrer que $|F(x)| \le x^{-1}$ pour tout x > 0.
 - **b)** En déduire la limite de de la fonction F en $+\infty$.
- **2.** a) Soit a > 0. Montrer que la fonction F est dérivable sur $[a, +\infty[$ et que

$$\forall x \in [a, +\infty[, \quad F'(x) = -\int_0^{+\infty} \sin(t) e^{-xt} dt.$$

- **b)** En déduire que la fonction F est dérivable sur $]0, +\infty[$ et déterminer une expression explicite du nombre F'(x) pour tout $x \in]0, +\infty[$.
- 3. Déduire des questions précédentes que

$$\forall x > 0$$
, $F(x) = \frac{\pi}{2} - \operatorname{Arctan}(x)$.

III. Calcul de l'intégrale de Dirichlet

On considère les fonctions $F_1:[0,1]\to\mathbb{R}$ et $F_2:[0,1]\to\mathbb{R}$ définies par

$$\forall x \in [0,1], \quad F_1(x) = \int_0^1 f(x,t) \, dt \quad \text{et} \quad F_2(x) = \int_1^{+\infty} f(x,t) \, dt.$$

- **1.** Montrer que la fonction F_1 est continue sur [0,1].
- **2.** Dans cette question, on considère la fonction $u: \mathbb{R}^2 \to \mathbb{R}$ définie dans la question **I.2.b**.
 - a) Soit $x \in [0,1]$. Montrer que la fonction $t \mapsto \frac{u(x,t)}{t^2}$ est intégrable sur $[1,+\infty[$ et que

$$F_2(x) = \frac{x\sin(1) + \cos(1)}{1 + x^2} e^{-x} + \int_1^{+\infty} \frac{u(x, t)}{t^2} dt.$$

- **b)** En déduire que la fonction F_2 est continue sur [0,1].
- **3.** Conclure que la fonction F est continue en 0, puis déterminer la valeur de l'intégrale I.

Fin