Fonction dilogarithme

Introduction

Dans ce problème, on étudie la fonction dilogarithme $L:]-\infty, 1] \to \mathbb{R}$ définie par

$$\forall x \in]-\infty, 1], \quad L(x) = \int_0^{+\infty} \frac{xt}{e^t - x} dt.$$

On admet et on pourra utiliser librement l'égalité

$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

I. Existence et premières propriétés de la fonction dilogarithme

Dans cette partie, on considère la fonction $f:]0, +\infty[\times] - \infty, 1] \to \mathbb{R}$ définie par

$$\forall (t,x) \in]0,+\infty[\times]-\infty,1], \quad f(t,x) = \frac{t}{\mathrm{e}^t-x}.$$

- **1.** Justifier que la fonction f est bien définie sur $]0, +\infty[\times] \infty, 1]$.
- **2.** Montrer que la fonction $t \mapsto f(t, 1)$ est intégrable sur $]0, +\infty[$.
- **3.** Soit $x \in]-\infty,1]$. En comparant les fonctions $t \mapsto f(t,x)$ et $t \mapsto f(t,1)$, montrer que $t \mapsto f(t,x)$ est intégrable sur $]0,+\infty[$.
- **4.** Montrer que la fonction L est continue sur $]-\infty,1]$.

II. Développement en série entière

Dans cette partie, on montre que la fonction L est développable en série entière. On considère un nombre réel $x \in [-1,1]$. Pour tout $n \in \mathbb{N}$, on définit la fonction $s_n :]0, +\infty[\to \mathbb{R}$ par

$$\forall t \in]0, +\infty[, \quad s_n(t) = t e^{-(n+1)t} x^n.$$

- **1.** Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_0^{+\infty} s_n(t) dt$ converge et que $\int_0^{+\infty} s_n(t) dt = \frac{x^n}{(n+1)^2}$.
- **2.** Montrer que la série de fonctions $\sum_{n\geq 0} s_n$ converge simplement sur $]0,+\infty[$ et que

$$\forall t \in]0, +\infty[, \quad \sum_{n=0}^{+\infty} s_n(t) = f(t, x).$$

- 3. Montrer que la série $\sum_{n\geqslant 1}\frac{x^n}{n^2}$ converge et déduire des questions précédentes que $L(x)=\sum_{n=1}^{+\infty}\frac{x^n}{n^2}$.
- **4.** Montrer que pour tout $x \in [-1, 1]$, on a $L(x) + L(-x) = \frac{1}{2}L(x^2)$.
- **5.** Déduire des questions précédentes les valeurs de L(1) et L(-1).

III. Une autre propriété

Dans cette partie, on considère la fonction $h:]0,1[\to \mathbb{R}$ définie par

$$\forall x \in]0,1[, h(x) = L(x) + L(1-x) + \ln(x)\ln(1-x).$$

1. Justifier que la fonction L est dérivable sur]-1,1[et montrer que l'on a

$$\forall x \in]-1,1[, \quad L'(x) = \begin{cases} -\frac{\ln(1-x)}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0. \end{cases}$$

- **2.** Montrer que la fonction h est constante sur]0,1[.
- **3.** Montrer que h(x) = L(1) pour tout $x \in]0,1[$.
- **4.** En déduire la valeur de l'intégrale $\int_0^{+\infty} \frac{t}{2e^t 1} dt$.

Fin