La constante d'Euler

Introduction

Dans ce problème, on considère la suite $(u_n)_{n\in\mathbb{N}^*}$ définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln(n).$$

Le premier objectif de ce problème est de montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers un nombre $\gamma\in\mathbb{R}$, appelé constante d'Euler. Le second objectif du problème est d'établir la relation

$$\gamma = -\int_0^{+\infty} e^{-t} \ln(t) dt.$$

I. Construction de la constante d'Euler

On considère la suite $(\Delta_n)_{n\geqslant 2}$ définie par $\Delta_n=u_n-u_{n-1}$ pour tout $n\in\mathbb{N}\setminus\{0,1\}$.

- **1.** Déterminer un nombre $a \in \mathbb{R}_+^*$ tel que $\Delta_n \sim -\frac{a}{n^2}$.
- **2.** Montrer que la série $\sum_{n\geq 2} \Delta_n$ est convergente.
- **3.** En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ est convergente.

II. Expression intégrale de la constante d'Euler

Dans la partie précédente, on a montré que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers un nombre réel que l'on note γ . Dans cette partie, on détermine une expression de γ sous la forme d'une intégrale.

Pour tout $n \in \mathbb{N}^*$, on considère la fonction $f_n :]0, +\infty[\to \mathbb{R}$ définie par

$$\forall t \in]0, +\infty[, \quad f_n(t) = \left\{ \begin{array}{ccc} \left(1 - \frac{t}{n}\right)^n \ln(t) & \text{si} & t < n \\ 0 & \text{si} & t \geqslant n. \end{array} \right.$$

A. Propriétés de la suite $(f_n)_{n \in \mathbb{N}^*}$

Dans cette sous-partie, on pourra utiliser l'inégalité $\ln(1+x) \le x$ valable pour tout $x \in]-1, +\infty[$.

1. Soit $t \in]0, +\infty[$. Justifier qu'il existe $n_0 \in \mathbb{N}^*$ tel que pour tout $n \in \mathbb{N}^*$ vérifiant $n \ge n_0$, on a

$$f_n(t) = \left(1 - \frac{t}{n}\right)^n \ln(t).$$

- **2.** Déduire de la question précédente que la suite de fonctions $(f_n)_{n \in \mathbb{N}^*}$ converge simplement vers la fonction $t \mapsto e^{-t} \ln(t)$ sur l'intervalle $]0, +\infty[$.
- **3.** Soit $n \in \mathbb{N}^*$. Montrer que pour tout $t \in]0, +\infty[$, on a $|f_n(t)| \leq e^{-t} |\ln(t)|$.
- **4.** Montrer que la fonction $t \mapsto e^{-t} \ln(t)$ est intégrable sur $]0, +\infty[$.

B. Convergence d'une suite d'intégrales

Pour tout $n \in \mathbb{N}^*$, on considère les intégrales

$$I_n = \int_0^{+\infty} f_n(t) dt = \int_0^n \left(1 - \frac{t}{n}\right)^n \ln(t) dt$$
 et $J_n = \int_0^1 u^n \ln(1 - u) du$.

On considère un entier $n \in \mathbb{N}^*$.

- **5.** Montrer que l'intégrale I_n est convergente.
- **6.** Déduire des résultats de la sous-partie **II.A** que la suite $(I_n)_{n\in\mathbb{N}^*}$ est convergente et que

$$\lim_{n\to+\infty} I_n = \int_0^{+\infty} e^{-t} \ln(t) dt.$$

7. Montrer que l'intégrale J_n est convergente si et seulement si l'intégrale

$$\int_0^1 \frac{u^{n+1}-1}{u-1} \mathrm{d}u$$

est convergente. En déduire que l'intégrale J_n est convergente et que l'on a les égalités

$$J_n = -\frac{1}{n+1} \int_0^1 \frac{u^{n+1} - 1}{u - 1} du = -\frac{1}{n+1} \sum_{k=1}^{n+1} \frac{1}{k}.$$

8. Montrer que l'on a la relation

$$I_n = \frac{n}{n+1} \ln(n) + n J_n.$$

9. Déduire des questions précédentes que

$$\gamma = -\int_0^{+\infty} e^{-t} \ln(t) dt.$$

Fin