CHAPITRE 9

Intégrales dépendant d'un paramètre

Jérôme VON BUHREN http://vonbuhren.free.fr

Lycée Couffignal - PT*

Lorsque l'on considère des fonctions $f_1, ..., f_n : A \to \mathbb{K}$ continues (respectivement \mathcal{C}^1) sur un intervalle A, on sait que leur somme $g = f_1 + \cdots + f_n$ conserve cette propriété.

Substituons le cadre discret exposé ci-dessus par un cadre continu : les fonctions f_1, \ldots, f_n sont remplacées par une fonction $f: A \times I \to \mathbb{K}$ de sorte que pour tout $t \in I$, la fonction $x \mapsto f(x,t)$ soit continue (respectivement \mathscr{C}^1) sur A; tandis que la somme est remplacée par une intégrale en considérant la fonction

$$g: x \mapsto \int_I f(x, t) dt.$$

Remarquons que sans hypothèses supplémentaires, la fonction g n'est même pas nécessairement définie sur A.

In	trod	TIC	101

Dans ce chapitre, nous donnerons des conditions suffisantes sur la fonction f pour que la fonction g soit définie et continue (respectivement \mathscr{C}^1) sur A. Ces résultats nous permettront notamment d'utiliser de nouvelles méthodes pour calculer certaines intégrales.

Dans tout le chapitre, on désigne par \mathbb{K} le corps \mathbb{R} ou le corps \mathbb{C} .

Remarquons que même dans des cas simples, la continuité de la fonction g de l'introduction n'est pas assurée. Par exemple, si on considère

$$f:(x,t)\mapsto x\mathrm{e}^{-xt}$$

qui est continue sur \mathbb{R}^2_+ , alors la fonction $g: \mathbb{R}_+ \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}_+, \quad g(x) = \int_0^{+\infty} f(x, t) \, \mathrm{d}t = \int_0^{+\infty} x \mathrm{e}^{-xt} \, \mathrm{d}t = \left\{ \begin{array}{ll} 0 & \mathrm{si} & x = 0 \\ 1 & \mathrm{si} & x > 0 \end{array} \right.$$

n'est pas continue sur \mathbb{R}_+ .

Nous avons par contre le résultat suivant.

Théorème de continuité d'une intégrale à paramètre

Soient A et I deux intervalles de \mathbb{R} . Soit $f: A \times I \to \mathbb{K}$ une fonction vérifiant les hypothèses suivantes.

- (i) Pour tout $t \in I$, la fonction $x \mapsto f(x, t)$ est continue sur A.
- (ii) Pour tout $x \in A$, la fonction $t \mapsto f(x, t)$ est continue sur I.
- (iii) Il existe une fonction $\varphi: I \to \mathbb{R}$ continue et intégrable sur I telle que

$$\forall (x, t) \in A \times I, \quad |f(x, t)| \le \varphi(t).$$
 (Hypothèse de domination)

La fonction $g: x \mapsto \int_I f(x, t) dt$ est définie et continue sur l'intervalle A.

DÉMONSTRATION

ADMISE

Remarques 1

- a) L'hypothèse (i) est dictée par la propriété que l'on souhaite conserver après intégration, l'hypothèse (ii) assure que l'intégrale définissant g puisse avoir un sens et l'hypothèse (iii) impose une condition « technique » pour assurer l'existence et la continuité de g.
- b) La fonction φ dans l'hypothèse (iii) ne doit pas dépendre de la variable x.

Montrons que la fonction $g: x \mapsto \int_0^{+\infty} \cos(xt) e^{-t^2} dt$ est continue sur \mathbb{R} . La fonction $f: \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ définie par $f: (x, t) \mapsto \cos(xt) e^{-t^2}$ vérifie les hypothèses suivantes.

- (i) Pour tout $t \in \mathbb{R}_+$, la fonction $x \mapsto \cos(xt)e^{-t^2}$ est continue sur \mathbb{R} .
- (ii) Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \cos(xt)e^{-t^2}$ est continue sur \mathbb{R}_+ .
- (iii) On a la majoration

$$\forall (x,t) \in \mathbb{R} \times \mathbb{R}_+, \quad |f(x,t)| \leq e^{-t^2}.$$

et la fonction $\varphi: t \mapsto e^{-t^2}$ est continue et intégrable sur \mathbb{R}_+ .

On conclut que la fonction g est continue sur $\mathbb R$ par le théorème de continuité.

L'hypothèse de domination peut s'avérer trop contraignante à vérifier dans certains cas. Par exemple, le théorème ne peut pas s'appliquer directement pour démontrer la continuité sur \mathbb{R}_+^* de la fonction

$$g: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{x+t} dt.$$

Dans ce cas, il peut s'avérer avantageux de vérifier l'hypothèse de domination localement. Plus précisément, si à la place de (iii), on montre que pour tout segment $S \subset A$, il existe une fonction $\varphi : S \to \mathbb{R}$ continue et intégrable sur S telle que

$$\forall (x, t) \in S \times I, \quad |f(x, t)| \le \varphi(t),$$
 (Hypothèse de domination locale)

alors on en déduit par le théorème que g est continue sur tout segment S inclus dans A. Comme la continuité est une propriété locale, on conclut que la fonction g est continue sur A.

Montrons que la fonction $g: x \mapsto \int_0^{+\infty} \frac{\mathrm{e}^{-t}}{x+t} \, \mathrm{d}t$ est continue sur \mathbb{R}_+^* . La fonction $f: \mathbb{R}_+^* \times \mathbb{R}_+ \to \mathbb{R}$ définie par $f: (x,t) \mapsto \frac{\mathrm{e}^{-t}}{x+t}$ vérifie les hypothèses suivantes.

- (i) Pour tout $t \in \mathbb{R}_+$, la fonction $x \mapsto \frac{e^{-t}}{x+t}$ est continue sur \mathbb{R}_+^* .
- (ii) Pour tout $x \in \mathbb{R}_+^*$, la fonction $t \mapsto \frac{e^{-t}}{r+t}$ est continue sur \mathbb{R}_+ .

(iii) Pour tout segment $[a, b] \subset \mathbb{R}_+^*$, on a la majoration

$$\forall (x,t) \in [a,b] \times \mathbb{R}_+, \quad \left| \frac{\mathrm{e}^{-t}}{x+t} \right| \leq \frac{\mathrm{e}^{-t}}{a+t}.$$

et la fonction $\varphi: t \mapsto \frac{e^{-t}}{a+t}$ est continue et intégrable sur \mathbb{R}_+ .

On en déduit que la fonction g est continue sur tout segment de \mathbb{R}_+^* par le théorème de continuité. Comme la continuité est une propriété locale, on conclut que la fonction g est continue sur \mathbb{R}_+^* .

Remarque 2

Si l'intervalle d'intégration I est un segment et que la fonction f est continue sur la partie $A \times I$ de \mathbb{R}^2 , alors la version locale du théorème de continuité assure que la continuité sur A de la fonction

$$g: x \mapsto \int_I f(x, t) dt.$$

En effet, les hypothèses (i) et (ii) sont vérifiées. De plus, la version locale de l'hypothèse (iii) est vérifiée : pour tout segment S dans A, comme la fonction f est continue sur la partie fermée et bornée $S \times I$ de \mathbb{R}^2 , elle est bornée par un réel positif M sur $S \times I$ et la fonction constante $\varphi : t \mapsto M$ est intégrale sur le segment I.

Exemple 3

La fonction $x \mapsto \int_0^{\pi} \frac{\cos(xt)}{1+\sin(t)} dt$ est continue sur \mathbb{R} .

On dispose d'un résultat analogue pour la dérivabilité d'une intégrale à paramètre.

Théorème de dérivabilité d'une intégrale à paramètre

Soient A et I deux intervalles de \mathbb{R} . Soit $f: A \times I \to \mathbb{K}$ une fonction vérifiant les hypothèses suivantes.

- (i) Pour tout $t \in I$, la fonction $x \mapsto f(x, t)$ est de classe \mathscr{C}^1 sur A.
- (ii) Pour tout $x \in A$, la fonction $t \mapsto f(x, t)$ est continue et intégrable sur I.
- (iii) Pour tout $x \in A$, la fonction $t \mapsto \frac{\partial f}{\partial x}(x, t)$ est continue sur I.

Théorème de dérivabilité d'une intégrale à paramètre

(iv) Il existe une fonction $\varphi: I \to \mathbb{R}$ continue et intégrable sur I telle que

$$\forall (x,t) \in A \times I, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \le \varphi(t).$$
 (Hypothèse de domination)

La fonction $g: x \mapsto \int_I f(x, t) dt$ est définie et de classe \mathscr{C}^1 sur l'intervalle A. De plus, on a

$$\forall x \in A, \quad g'(x) = \int_{I} \frac{\partial f}{\partial x}(x, t) dt.$$

DÉMONSTRATION

ADMISE

Remarques 3

- a) L'hypothèse (i) est dictée par la propriété que l'on souhaite conserver après intégration, l'hypothèse (ii) assure l'existence de g, l'hypothèse (iii) assure que l'intégrale sur I de $t\mapsto \frac{\partial f}{\partial x}(x,t)$ puisse avoir un sens et l'hypothèse (iv) impose une condition « technique » pour assurer que g est \mathscr{C}^1 et l'intégrabilité de $t\mapsto \frac{\partial f}{\partial x}(x,t)$.
- b) La fonction φ dans l'hypothèse (iv) ne doit pas dépendre de la variable x.

Montrons que la fonction $g: x \mapsto \int_0^{+\infty} e^{-t^2} e^{itx} dt$ est de classe \mathscr{C}^1 sur \mathbb{R} . La fonction $f: \mathbb{R} \times \mathbb{R}_+ \to \mathbb{R}$ définie par $f: (x, t) \mapsto e^{-t^2} e^{itx}$ vérifie les hypothèses suivantes.

- (i) Pour tout $t \in \mathbb{R}_+$, la fonction $x \mapsto e^{-t^2} e^{itx}$ est de classe \mathscr{C}^1 sur \mathbb{R} .
- (ii) Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto e^{-t^2} e^{itx}$ est continue sur \mathbb{R}_+ . De plus, on a

$$\forall t \in \mathbb{R}_+, \quad \left| e^{-t^2} e^{itx} \right| = e^{-t^2} = O\left(\frac{1}{t^2}\right) \text{ lorsque } t \to +\infty,$$

donc la fonction $t \mapsto e^{-t^2} e^{itx}$ est intégrable sur \mathbb{R}_+ .

(iii) Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \frac{\partial f}{\partial x}(x, t) = ite^{-t^2}e^{itx}$ est continue sur \mathbb{R}_+ .

(iv) On a la majoration

$$\forall (x, t) \in \mathbb{R} \times \mathbb{R}_+, \quad \left| \frac{\partial f}{\partial x}(x, t) \right| \le t e^{-t^2}$$

et la fonction $\varphi: t \mapsto t e^{-t^2}$ est continue et intégrable sur \mathbb{R}_+ .

On conclut que la fonction g est de classe \mathscr{C}^1 sur \mathbb{R} par le théorème de dérivabilité. De plus, on a

$$\forall x \in \mathbb{R}, \quad g'(x) = \int_0^{+\infty} ite^{-t^2} e^{itx} dt.$$

Remarque 4

En utilisant le théorème précédent avec une récurrence, on peut démontrer qu'une fonction définie par une intégrale à paramètre est de classe \mathscr{C}^{∞} .

Exemple 5

Montrons que la fonction $g: x \mapsto \int_0^{+\infty} e^{-t^2} e^{itx} dt$ est de classe \mathscr{C}^{∞} sur \mathbb{R} . Plus précisément, on démontre par récurrence pour tout $n \in \mathbb{N}^*$ la propriété

$$\mathscr{P}_n$$
: « la fonction g est de classe \mathscr{C}^n et

$$\forall x \in \mathbb{R}, \quad g^{(n)}(x) = \int_0^{+\infty} (it)^n e^{-t^2} e^{itx} dt \, ...$$

- Initialisation : Pour n = 1, la propriété \mathcal{P}_1 a été démontrée dans l'exemple précédent.
- Hérédité: Soit n∈ N* tel que P_n est vraie. Montrons que la propriété P_{n+1} est vérifiée.
 La fonction f: R × R₊ → R définie par f: (x, t) → (it)ⁿe^{-t²}e^{itx} vérifie les hypothèses suivantes.
 - (i) Pour tout $t \in \mathbb{R}_+$, la fonction $x \mapsto (it)^n e^{-t^2} e^{itx}$ est de classe \mathscr{C}^1 sur \mathbb{R} .
 - (ii) Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto (it)^n e^{-t^2} e^{itx}$ est continue sur \mathbb{R}_+ . De plus, on a

$$\forall t \in \mathbb{R}_+, \quad \left| (it)^n e^{-t^2} e^{itx} \right| = t^n e^{-t^2} = O\left(\frac{1}{t^2}\right) \text{ lorsque } t \to +\infty,$$

donc la fonction $t \mapsto (it)^n e^{-t^2} e^{itx}$ est intégrable sur \mathbb{R}_+ .

- (iii) Pour tout $x \in \mathbb{R}$, la fonction $t \mapsto \frac{\partial f}{\partial x}(x, t) = (it)^{n+1} e^{-t^2} e^{itx}$ est continue sur \mathbb{R}_+ .
- (iv) On a la majoration

$$\forall (x,t) \in \mathbb{R} \times \mathbb{R}_+, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \le t^{n+1} e^{-t^2}$$

et la fonction $\varphi: t \mapsto t^{n+1} \mathrm{e}^{-t^2}$ est continue et intégrable sur \mathbb{R}_+ . On en déduit que la fonction $g^{(n)}$ est de classe \mathscr{C}^1 sur \mathbb{R} par le théorème de dérivabilité. De plus, on a

$$\forall x \in \mathbb{R}, \quad g^{(n+1)}(x) = \int_0^{+\infty} (it)^{n+1} e^{-t^2} e^{itx} dt.$$

On a démontré la propriété \mathcal{P}_{n+1} .

Finalement, on a prouvé par récurrence que la fonction g est de classe \mathscr{C}^∞ sur $\mathbb R$ et que

$$\forall n \in \mathbb{N}, \quad \forall x \in \mathbb{R}, \quad g^{(n)}(x) = \int_0^{+\infty} (it)^n e^{-t^2} e^{itx} dt.$$

Comme pour le théorème de continuité, il peut s'avérer utile de vérifier l'hypothèse de domination localement. Plus précisément, si à la place de (iv), on montre que pour tout segment $S \subset A$, il existe une fonction $\varphi: S \to \mathbb{R}$ continue et intégrable sur S telle que

$$\forall (x,t) \in S \times I, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| \le \varphi(t), \quad \text{(Hypothèse de domination locale)}$$

alors on en déduit par le théorème que g est de classe \mathscr{C}^1 sur tout segment S inclus dans A. Comme la dérivabilité et la continuité sont des propriétés locales, on conclut que la fonction g est de classe \mathscr{C}^1 sur A.

Montrons que $g: x \mapsto \int_0^{+\infty} \frac{e^{-t}}{x+t} dt$ est de classe \mathscr{C}^1 sur \mathbb{R}_+^* .

La fonction $f:(x,t)\mapsto \frac{\mathrm{e}^{-t}}{x+t}$ vérifie les hypothèses suivantes.

- (i) Pour tout $t \in \mathbb{R}_+^*$, la fonction $x \mapsto \frac{e^{-t}}{r+t}$ est de classe \mathscr{C}^1 sur \mathbb{R}_+^* .
- (ii) Pour tout $x \in \mathbb{R}_+^*$, la fonction $t \mapsto \frac{e^{-t}}{r+t}$ est continue sur \mathbb{R}_+^* . De plus, on a

$$\left| \frac{e^{-t}}{x+t} \right| = O\left(\frac{1}{t^2}\right) \text{ lorsque } t \to +\infty,$$

donc la fonction $t \mapsto \frac{e^{-t}}{r+t}$ est intégrable sur \mathbb{R}_+^* .

- (iii) Pour tout $x \in \mathbb{R}_+^*$, la fonction $t \mapsto \frac{\partial f}{\partial x}(x,t) = -\frac{\mathrm{e}^{-t}}{(x+t)^2}$ est continue sur \mathbb{R}_+^* .
- (iv) Pour tout segment $[a, b] \subset \mathbb{R}_+^*$, on a la majoration

$$\forall (x,t) \in [a,b] \times \mathbb{R}_+, \quad \left| \frac{\partial f}{\partial x}(x,t) \right| = \frac{\mathrm{e}^{-t}}{(x+t)^2} \leqslant \frac{\mathrm{e}^{-t}}{(a+t)^2}.$$

et la fonction $\varphi: t \mapsto \frac{\mathrm{e}^{-t}}{(a+t)^2}$ est continue et intégrable sur \mathbb{R}_+ .

On en déduit que la fonction g est de classe \mathscr{C}^1 sur tout segment de \mathbb{R}_+^* par le théorème de dérivabilité. Comme la dérivabilité et la continuité sont des propriétés locales, on conclut que la fonction g est de classe \mathscr{C}^1 sur \mathbb{R}_+^* . De plus, on a

$$\forall x \in \mathbb{R}_+^*, \quad g'(x) = -\int_0^{+\infty} \frac{e^{-t}}{(x+t)^2} dt.$$