TD 16

Équations différentielles linéaires du second ordre

Partie I Révisions - Équations différentielles d'ordre 1

Exercice 1 : Résoudre les équations différentielles suivantes sur \mathbb{R} .

(i)
$$y' + y = 2\sin(t)$$
,

(i)
$$y' + y = 2\sin(t)$$
, (ii) $y' + 2y = t^2 - 2t + 3$,

$$(iii) (1+e^t)y'+e^ty=1+e^t$$

(iii)
$$(1+e^t)y'+e^ty=1+e^t$$
, $(iv)(t^2+1)y'-ty=(t^2+1)^{3/2}$.

Exercice 2: Résoudre les équations différentielles suivantes sur \mathbb{R} .

(i)
$$ty' - 2y = t^3$$
, (ii) $t^2y' - y = 0$, (iii) $ty' + y = 1$.

$$(ii) \quad t^2y' - y = 0,$$

$$(i\,i\,i)\,t\,y'+y=1$$

Exercice 3: Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ continues vérifiant

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^x t f(t) dt + 1.$$

Exercice 4: Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que

$$\forall x \in \mathbb{R}, \quad f'(x) + f(x) + \int_0^1 f(t) \, \mathrm{d}t = 0.$$

Exercice 5: Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 telle que

$$f(0) = 0$$
 et $\forall x \in \mathbb{R}$, $f'(x) \geqslant f(x)$.

Montrer que $f(x) \ge 0$ pour tout $x \in \mathbb{R}_+$.

Partie II Révisions - Équations différentielles d'ordre 2

Exercice 6 : Résoudre les équations différentielles suivantes sur \mathbb{R} .

(i)
$$y'' - 4y' + 3y = e^t$$
, (ii) $y'' + 9y = t + 1$,

(*ii*)
$$y'' + 9y = t + 1$$

(iii)
$$y'' - 2y' + y = t + 2e^t$$
, $(iv) y'' + 2y' + 2y = \sin(t)$,

$$(i v) y'' + 2y' + 2y = \sin(t)$$

$$(v) y'' - 3y' + 2y = \sin(2t),$$

$$(v) \ v'' - 3v' + 2v = \sin(2t), \qquad (vi) \ v'' - 2v' + 2v = e^t \cos(t).$$

Exercice 7: On considère sur \mathbb{R} l'équation différentielle

$$(1 + e^t)y'' + 2e^ty' + (2e^t + 1)y = e^t. (E)$$

- 1. Soit y une solution de (E). Déterminer une équation différentielle linéaire d'ordre 2 vérifiée par la fonction $z(t) = (1 + e^t) \gamma(t)$.
- 2. En déduire les solutions de (*E*).

Exercice 8: On considère sur $I = [0, +\infty)$ l'équation différentielle

$$x^{2}y'' - 3xy' + 4y = 0. (E)$$

- 1. Soit γ une solution de (E). Déterminer une équation différentielle linéaire d'ordre 2 vérifiée par la fonction $z(t) = y(e^t)$.
- 2. En déduire les solutions de (*E*) sur *I*.

Exercice 9: On considère sur I =]-1,1[l'équation différentielle

$$(1 - x2)y'' - xy' + y = 0.$$
 (E)

- 1. Soit γ une solution de (E). Déterminer une équation différentielle linéaire d'ordre 2 vérifiée par la fonction $z(t) = y(\sin(t))$.
- 2. En déduire les solutions de (*E*) sur *I*.

Exercice 10: Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables vérifiant

$$\forall x \in \mathbb{R}, \quad f'(x) + f(-x) = e^x.$$

Partie III Équations différentielles linéaires d'ordre 2

Exercice 11 : Soit a > 0. On considère sur $I =]0, +\infty[$ l'équation différentielle

$$x^{2}y'' + xy' - a^{2}y = 0. (E)$$

- 1. Déterminer les solutions de (*E*) de la forme $y: x \mapsto x^p$ pour $p \in \mathbb{R}$.
- 2. En déduire les solutions de (E) sur $]0, +\infty[$.

Exercice 12: On considère sur ℝ l'équation différentielle

$$(t+1)^2y'' - 2(t+1)y' + 2y = 0. (E)$$

- 1. Déterminer les fonctions polynomiales solutions de (*E*).
- 2. En déduire les solutions de (*E*) sur les intervalles $]-\infty,-1[$ et $]-1,+\infty[$.
- 3. En déduire les solutions de (E) sur \mathbb{R} .

Exercice 13: On considère sur ℝ l'équation différentielle

$$(t^2 + 1) y'' - 2y = 0.$$
 (E)

- 1. Déterminer les solutions polynomiales de (*E*).
- 2. En déduire les solutions de (E) sur \mathbb{R} .

Exercice 14: On considère sur \mathbb{R} l'équation différentielle

$$t^2y'' + ty' - y = 1. (E)$$

- 1. Déterminer les solutions polynomiales de l'équation homogène (*H*).
- 2. En déduire les solutions de (*E*) sur les intervalles $]-\infty,0[$ et $]0,+\infty[$.
- 3. En déduire l'ensemble des solutions de (E) sur \mathbb{R} .

Exercice 15: On considère sur ℝ l'équation différentielle

$$(1+t^2)y'' + 4ty' + 2y = 0. (E)$$

- 1. Déterminer les solutions développables en série entière de (*E*).
- 2. En déduire l'ensemble des solutions de (E) sur \mathbb{R} .

Exercice 16: On considère sur ℝ l'équation différentielle

$$x(1-x)y'' + (1-3x)y' - y = 0.$$
 (E)

- 1. Déterminer les solutions développables en série entière de (*E*).
- 2. En déduire l'ensemble des solutions de (E) sur $]-\infty,0[$,]0,1[et $]1,+\infty[$.
- 3. En déduire l'ensemble des solutions de (E) sur \mathbb{R} .

Exercice 17: On considère sur \mathbb{R} l'équation différentielle

$$x^{2}(1-x)y'' - x(1+x)y' + y = 2x^{3}.$$
 (E)

- 1. Déterminer les solutions développables en série entière de l'équation homogène (*H*) associée à (*E*).
- 2. En déduire l'ensemble des solutions de (*E*) sur $]-\infty,0[$,]0,1[et $]1,+\infty[$.
- 3. En déduire l'ensemble des solutions de (E) sur \mathbb{R} .

Exercice 18: Déterminer les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ telles que

$$\forall x \in \mathbb{R}, \quad f(x) = -1 - \int_0^x (2x - t) f(t) \, \mathrm{d}t.$$

Exercice 19: Soient $p:[a,b] \to \mathbb{R}$ et $q:[a,b] \to \mathbb{R}$ des fonctions continues. Montrer que si $f:[a,b] \to \mathbb{R}$ est une solution non nulle de l'équation différentielle

$$y'' + p(t)y' + q(t)y = 0,$$

alors elle s'annule un nombre fini de fois sur [a, b].