TD 10

Courbes planes

Dans tous les exercices, on considère un plan affine euclidien orienté \mathscr{P} muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) .

Partie I Révisions - Géométrie plane

Exercice 1 : Déterminer une équation cartésienne et une représentation paramétrique de chacune des droites suivantes.

- (i) La droite \mathcal{D}_1 passant par A(2,3) et dirigée par $\vec{u}(2,1)$.
- (ii) La droite \mathcal{D}_2 passant par A(-1,3) et B(2,1).
- (iii) La droite \mathcal{D}_3 passant par A(2,1) dont un vecteur normal est $\vec{n}(-2,3)$.

Exercice 2: On considère la droite \mathcal{D} d'équation cartésienne 2x + 3y = 1.

- 1. Déterminer une équation cartésienne et une représentation paramétrique de la droite orthogonale à \mathcal{D} passant le point A(1,1).
- 2. Calculer la distance du point A à la droite \mathcal{D} .
- 3. Déterminer le projeté orthogonal du point A sur la droite \mathcal{D} .

Exercice 3 : On considère la droite \mathscr{D} d'équation cartésienne x + y = 3 et l'ensemble du plan \mathscr{C} d'équation cartésienne $x^2 + y^2 - 4x + 2y + 1 = 0$.

- 1. Déterminer la nature géométrique de \mathscr{C} .
- 2. Déterminer la nature de l'intersection entre $\mathscr C$ et la droite $\mathscr D$.
- 3. Déterminer l'intersection entre $\mathscr C$ et la droite $\mathscr D$.

Exercice 4: Déterminer en fonction du paramètre $m \in \mathbb{R}$ la nature de l'ensemble du plan \mathcal{C}_m d'équation cartésienne $x^2 + y^2 - 4x + 2y = m$.

Partie II Courbe planes paramétrées

Exercice 5: On considère la courbe paramétrée par $f: t \mapsto (\operatorname{ch}(t), \operatorname{sh}(t))$.

- 1. Montrer que la courbe admet une tangente dont on précisera une équation cartésienne en chacun de ses points.
- 2. Étudier les branches infinies de la courbe paramétrée.

Exercice 6: On considère la courbe paramétrée par $f: t \mapsto (3t^2, 2t^3)$.

- 1. Étudier les branches infinies de la courbe paramétrée.
- 2. Montrer que la courbe admet une tangente dont on précisera une équation cartésienne en chacun de ses points.
- 3. Déterminer les droites qui sont à la fois tangentes et normales à cette courbe.
- 4. Déterminer l'orthoptique de la courbe, i.e. l'ensemble des points du plan par lesquels passent deux tangentes à la courbe orthogonales entre elles.

Exercice 7: On considère la courbe paramétrée par

$$\forall t \in \mathbb{R}, \quad \begin{cases} x(t) = (t+1)\exp(t) \\ y(t) = t^2 \exp(t). \end{cases}$$

- 1. Montrer que la courbe admet un unique point stationnaire.
- 2. Tracer la courbe paramétrée au voisinage de ce point.
- 3. Étudier les branches infinies de la courbe.

Exercice 8 : Pour chacune des fonctions d'une variable réelle ci-dessous, étudier les branches infinies de sa courbe représentative.

(i)
$$h: t \mapsto \frac{t^3 + 1}{t^2 - 3t + 2}$$
, (ii) $h: t \mapsto \sqrt{t^2 + 2t + 4}$.

Exercice 9 : Pour chacune des courbes paramétrées ci-dessous, déterminer ses points d'inflexions et préciser une équation de la tangente en ces points.

(i)
$$f: t \mapsto (e^t, t^2)$$
, (ii) $f: t \mapsto ((t-2)^3, t^2-4)$.

Exercice 10 : Tracer la courbe paramétrée par f dans les cas suivants.

(i)
$$f: t \mapsto \left(\frac{1-t^2}{1+t^2}, \frac{t^3}{1+t^2}\right)$$
 (ii) $f: t \mapsto \left(2\cos(2t), \sin(3t)\right)$.

Exercice 11 - Lemniscate de Bernoulli: On considère la courbe paramétrée par

$$f: t \mapsto \left(\frac{t}{1+t^4}, \frac{t^3}{1+t^4}\right).$$

- 1. Soit $t \in \mathbb{R}^*$. Comparer les points M(1/t) et M(t).
- 2. Sur quelle intervalle peut-on réduire l'étude de f?
- 3. Tracer la courbe paramétrée par f.

Exercice 12 - Folium de Descartes: On considère la courbe paramétrée par

$$f: t \mapsto \left(\frac{3t}{1+t^3}, \frac{3t^2}{1+t^3}\right).$$

- 1. Soit $t \in \mathbb{R} \setminus \{0, -1\}$. Comparer les points M(1/t) et M(t).
- 2. Sur quelle intervalle peut-on réduire l'étude de *f* ?
- 3. Tracer la courbe paramétrée par f.
- 4. Montrer qu'une équation cartésienne de la courbe est $x^3 + y^3 = 3xy$.

Exercice 13 - Strophoïde droite: On considère la courbe paramétrée par

$$f: t \mapsto \left(\frac{1-t^2}{1+t^2}, t\frac{1-t^2}{1+t^2}\right).$$

- 1. Tracer la courbe paramétrée par f.
- 2. Soit $(t_1, t_2, t_3) \in \mathbb{R}^3$. Déterminer une condition nécessaire et suffisante sur les réels t_1 , t_2 et t_3 pour que les points $M(t_1)$, $M(t_2)$ et $M(t_3)$ soient alignés.

Partie III Propriétés métriques des courbes planes

Exercice 14: On considère la courbe paramétrée par

$$\forall t \in \mathbb{R}, \quad \left\{ \begin{array}{ll} x(t) & = & 3t^2 - 1 \\ y(t) & = & 3t^3 - t. \end{array} \right.$$

- 1. Déterminer le point double de la courbe.
- 2. Calculer la longueur de la boucle de la courbe.

Exercice 15: On considère la fonction $h: [0,1] \to \mathbb{R}$ définie par $h: t \mapsto t\sqrt{t}$. Calculer la longueur de la courbe représentative de h.

Exercice 16: On considère la courbe paramétrée par $f:]0, \pi[\to \mathbb{R}^2$ où

$$\forall t \in]0,\pi[, \quad \begin{cases} x(t) = \cos^2(t) + \ln(\sin(t)) \\ y(t) = \sin(t)\cos(t). \end{cases}$$

Calculer la longueur de cette courbe entre ses deux points de rebroussement.

Exercice 17: On considère les courbes paramétrées par

$$f: t \mapsto (2\cos(t), \sin(t))$$
 et $g: t \mapsto (\cos(t)\sin(2t), \sin(t)\sin(2t))$.

Montrer que les deux courbes ont la même longueur.

Exercice 18 - Spirale logarithmique : Soit $\lambda \in \mathbb{R}_+^*$ avec $\lambda \neq 1$. On considère la courbe paramétrée par

$$\forall t \in \mathbb{R}, \quad \begin{cases} x(t) = \lambda^t \cos(t) \\ y(t) = \lambda^t \sin(t). \end{cases}$$

- 1. Calculer l'abscisse curviligne d'origine 0 de f.
- 2. Déterminer le repère de Frenet associé à f.
- 3. Calculer la courbure de f.
- 4. Déterminer la développée de f et l'interpréter géométriquement.

Exercice 19 - Chainette : On considère la courbe paramétrée par $t \mapsto (t, \operatorname{ch}(t))$.

- 1. Calculer l'abscisse curviligne d'origine 0 de f .
- 2. Calculer la courbure de la courbe.
- 3. Déterminer la développée de la courbe.

Exercice 20 - Astroïde: On considère la courbe paramétrée par

$$\forall t \in \mathbb{R}, \quad \left\{ \begin{array}{ll} x(t) & = & \cos^3(t) \\ y(t) & = & \sin^3(t). \end{array} \right.$$

- 1. Tracer la courbe paramétrée par f.
- 2. Déterminer la longueur de la courbe.
- 3. Déterminer le repère de Frenet associé à f sur $]0,\pi/2[$.
- 4. Déterminer une application $\alpha:]0, \pi/2[\to \mathbb{R}$ de classe \mathscr{C}^1 telle que

$$\forall t \in]0, \pi/2[, \quad \overrightarrow{T}(t) = \begin{pmatrix} \cos(\alpha(t)) \\ \sin(\alpha(t)) \end{pmatrix},$$

puis en déduire la courbure de f sur l'intervalle $]0,\pi/2[$.

- 5. Retrouver le résultat précédent en utilisant un calcul direct.
- 6. Déterminer la développée de la courbe et l'interpréter géométriquement.
- 7. Déterminer l'orthoptique de l'astroïde, i.e. l'ensemble des points du plan par lesquels passent deux tangentes de l'astroïde orthogonales entre elles.

Exercice 21 - Ellipse : Soit $(a,b) \in (\mathbb{R}_+^*)^2$. Montrer que la développée de l'ellipse paramétrée par $f: t \mapsto (a\cos(t), b\sin(t))$ est une dilatation de l'astroïde.

Exercice 22 - Cardioïde: On considère la courbe paramétrée par

$$f: t \mapsto (2\cos(t) + \cos(2t), 2\sin(t) + \sin(2t)).$$

- 1. Tracer le courbe paramétrée par f.
- 2. Calculer la longueur de la courbe.
- 3. Déterminer la développée de la courbe et l'interpréter géométriquement.

Exercice 23 - Cycloïde: On considère la courbe paramétrée par

$$\forall t \in \mathbb{R}, \quad \begin{cases} x(t) = t - \sin(t) \\ y(t) = 1 - \cos(t). \end{cases}$$

- 1. Soit $t \in \mathbb{R}$. Comparer les points M(t) et $M(t+2\pi)$.
- 2. Sur quelle intervalle peut-on réduire l'étude de la courbe paramétrée?
- 3. Tracer la courbe paramétrée par f.
- 4. Calculer la longueur d'une arche de la courbe paramétrée par f.
- 5. Montrer que la développée d'une arche de la cycloïde est le translaté d'une arche de la cycloïde.

Exercice 24 - Deltoïde: On considère la courbe paramétrée par

$$\forall t \in \mathbb{R}, \quad \begin{cases} x(t) = 2\cos(t) + \cos(2t) \\ y(t) = 2\sin(t) - \sin(2t). \end{cases}$$

- 1. Tracer la courbe paramétrée par f.
- 2. Montrer que la développée de la courbe peut être obtenue par composition d'une homothétie et d'une rotation.

Exercice 25 - Parabole : Soit $p \in \mathbb{R}_+^*$. On considère la parabole paramétrée par

$$f: t \mapsto \left(\frac{t^2}{2p}, t\right).$$

- 1. Déterminer la courbure de la courbe paramétrée par f.
- 2. Déterminer la développée de la courbe paramétrée par f .
- 3. Calculer l'abscisse curviligne d'origine 0 de f.

Exercice 26 : Déterminer les courbes paramétrées régulières de classe \mathscr{C}^2 dont la courbure est nulle.

Partie IV Enveloppe d'une famille de droites

Exercice 27: Déterminer l'enveloppe de la famille $(\mathcal{D}_t)_{t \in \mathbb{R}}$ où \mathcal{D}_t est la droite admettant pour équation cartésienne $(1-t^2)x + 2ty = 1 + t^2$.

Exercice 28 : Déterminer l'enveloppe de la famille $(\mathcal{D}_t)_{t \in \mathbb{R}}$ où \mathcal{D}_t est la droite admettant pour équation cartésienne $(t-2)x + (3t-2t^2)y + t^3 = 0$.

Exercice 29 : On considère la courbe d'équation xy = 1. On note A_t et B_t les points de la courbe d'abscisse respective t et 2t pour $t \in \mathbb{R}^*$. Déterminer l'enveloppe de la famille de droites $(A_tB_t)_{t\in\mathbb{R}^*}$.

Exercice 30 : Pour tout $t \in \mathbb{R}$, on considère les points $P_t(\cos(t), 0)$ et $Q_t(0, \sin(t))$. Déterminer l'enveloppe de la famille des médiatrices de $[P_tQ_t]$ pour $t \in \mathbb{R}$.

Exercice 31 : Soit *F* un point du plan qui n'est pas sur le cercle trigonométrique.

- 1. Déterminer l'enveloppe \mathscr{E} de la famille des médiatrices du segment [MF] lorsque M décrit le cercle trigonométrique.
- 2. Montrer que la courbe $\mathcal E$ est bornée si et seulement si le point F est à l'intérieur du disque trigonométrique.

Partie V Courbes planes implicites

Exercice 32: Soit \mathscr{C} la courbe plane d'équation cartésienne $x^2 - y^2 = 0$.

- 1. Tracer la courbe \mathscr{C} .
- 2. Déterminer les points singuliers de \mathscr{C} .

Exercice 33 - Ellipse : Soient a, b > 0. Soit \mathcal{C} la courbe plane d'équation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

- 1. Déterminer les points réguliers de \mathscr{C} .
- 2. Donner en ces points une équation de la tangente à \mathscr{C} .

Exercice 34 - Hyperbole : Soient a, b > 0. Soit \mathscr{C} la courbe plane d'équation

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1.$$

- 1. Déterminer les points réguliers de \mathscr{C} .
- 2. Donner en ces points une équation de la tangente à \mathscr{C} .

Exercice 35 - Folium de Descartes : Soit $\mathscr C$ la courbe plane d'équation

$$x^3 + y^3 - 3xy = 0.$$

- 1. Déterminer les points réguliers de \mathscr{C} .
- 2. Donner en ces points une équation de la tangente à \mathscr{C} .

Exercice 36 : Tracer quelques lignes de niveau et placer quelques gradients des applications suivantes.