Intégration sur un intervalle —

Convergence d'intégrales Partie I

I.A - Exercices d'applications

Exercice 1: Étudier la convergence des intégrales ci-dessous.

(i)
$$\int_0^{+\infty} \frac{(t-1)(t-5)}{t^2(t^2+1)} dt$$
, (ii) $\int_0^{+\infty} \frac{dt}{e^t-1}$, (iii) $\int_0^{+\infty} \cos\left(\frac{1}{t^2}\right) dt$,

$$(ii)$$
 $\int_0^{+\infty} \frac{\mathrm{d}t}{\mathrm{e}^t - 1}$

$$(iii) \int_0^{+\infty} \cos\left(\frac{1}{t^2}\right) dt,$$

$$(iv) \int_0^{+\infty} \sin\left(\frac{1}{t^2}\right) dt,$$
 $(v) \int_0^{+\infty} \ln(t) e^{-t} dt,$ $(vi) \int_0^1 \frac{\ln(t)}{(1-t)^{3/2}} dt,$

$$(v)$$
 $\int_0^{+\infty} \ln(t) e^{-t} dt$,

$$(vi) \int_0^1 \frac{\ln(t)}{(1-t)^{3/2}} \, \mathrm{d}t,$$

$$(vii) \int_0^{+\infty} \sin(t) \sin(t^{-1}) dt, \quad (viii) \int_0^1 \frac{dt}{\sqrt[3]{t^2 - t^3}}, \quad (ix) \int_0^1 \frac{dt}{(1 - t)\sqrt{t}},$$

$$(ix) \int_0^1 \frac{\mathrm{d}t}{(1-t)\sqrt{t}},$$

$$(x) \int_0^{+\infty} t \sin(t) e^{-t} dt, \qquad (xi) \int_0^{+\infty} \sin(t^2) dt, \quad (xii) \int_1^{+\infty} e^{-\sqrt{\ln(t)}} dt$$

$$(xi)$$
 $\int_0^{+\infty} \sin(t^2) dt$

$$xii$$
) $\int_{1}^{+\infty} e^{-\sqrt{\ln(t)}} dt$

$$(xiii) \int_{-\pi/2}^{\pi/2} \ln(1+\sin(t)) dt, \qquad (xiv) \int_{0}^{+\infty} t^{-\ln(t)} dt, \qquad (xv) \int_{0}^{1} \frac{dt}{\operatorname{Arccos}(t)}.$$

$$(xiv)$$
 $\int_{0}^{+\infty} t^{-\ln(t)} dt$

$$(xv) \int_0^1 \frac{\mathrm{d}t}{\mathrm{Arccos}(t)}$$

Exercice 2: Étudier la convergence des intégrales suivantes.

(i)
$$\int_0^{+\infty} \left((t+1)^{1/3} - t^{1/3} \right)^2 dt$$
, (ii) $\int_0^{+\infty} \ln(\operatorname{th}(t)) dt$,

$$(ii)$$
 $\int_0^{+\infty} \ln(\operatorname{th}(t)) dt$,

(*iii*)
$$\int_{0}^{+\infty} \left(t + 2 - \sqrt{t^2 + 4t + 1} \right) dt$$
, (*iv*) $\int_{1}^{+\infty} \frac{\sin(t)}{\sqrt{t} + \sin(t)} dt$.

$$(iv) \int_{1}^{+\infty} \frac{\sin(t)}{\sqrt{t} + \sin(t)} dt$$

Exercice 3: Soit $a \in \mathbb{R}$. Étudier la convergence des intégrales suivantes.

(i)
$$I_a = \int_0^{+\infty} \frac{t - \sin(t)}{t^a} dt$$
, (ii) $J_a = \int_0^{\pi/2} \tan(t)^a dt$.

Exercice 4 - Intégrales de Bertrand : Soit $(a, b) \in \mathbb{R}^2$. Étudier la convergence de

$$I_{a,b} = \int_{e}^{+\infty} \frac{\mathrm{d}t}{t^a \ln(t)^b}$$
 et $J_{a,b} = \int_{0}^{1/e} \frac{\mathrm{d}t}{t^a \ln(t)^b}$.

Exercice 5: Soit $(a, b) \in \mathbb{R}^2$. Étudier la convergence des intégrales suivantes.

(i)
$$\int_0^{+\infty} \frac{t^a e^{-t}}{1+t^b} dt$$
, (ii) $\int_0^{+\infty} \frac{t^a}{1+t^b} dt$.

Exercice 6: On considère l'intégrale $I = \int_0^{+\infty} \frac{\sin(t)}{t} dt$.

- 1. Montrer que l'intégrale I est convergente.
- 2. Montrer que l'intégrale *I* n'est pas absolument convergente.
- 3. Montrer que

$$I = \int_0^{+\infty} \frac{\sin^2(t)}{t^2} \, \mathrm{d}t.$$

Exercice 7: Soient les fonctions $f: [\pi, +\infty[\to \mathbb{R} \text{ et } g: [\pi, +\infty[\to \mathbb{R} \text{ définies par }$

$$\forall t \in [\pi, +\infty[, f(t) = \frac{\sin(t)}{t} \text{ et } g(t) = \ln\left(1 + \frac{\sin(t)}{t}\right).$$

Montrer que f et g sont équivalentes en $+\infty$, mais que $\int_{-\infty}^{+\infty} f(t) dt$ et $\int_{-\infty}^{+\infty} g(t) dt$ ne sont pas de même nature.

Exercice 8: Soit $a \in \mathbb{R}_+^*$. Étudier la convergence de l'intégrale

$$I_a = \int_1^{+\infty} \ln\left(1 + \frac{\sin(t)}{t^a}\right) dt.$$

Exercice 9: Soit $a \in \mathbb{R}$. Étudier la convergence des intégrales suivantes.

$$(i) \int_0^{+\infty} \frac{\cos(t)}{t^a} \, \mathrm{d}t,$$

(i)
$$\int_0^{+\infty} \frac{\cos(t)}{t^a} dt,$$
 (ii)
$$\int_0^{+\infty} \frac{\sin(t)}{t^a} dt,$$

$$(iii) \int_0^{+\infty} \cos(t^a) dt, \qquad (iv) \int_0^{+\infty} \sin(t^a) dt.$$

$$(i\nu)$$
 $\int_0^{+\infty} \sin(t^a) dt$.

Exercice 10: Soit $P \in \mathbb{R}[X]$ un polynôme non nul tel que $\deg(P) \geq 2$. Montrer que $\int_{0}^{+\infty} \cos(P(t)) dt$ est une intégrale convergente.

Exercice 11: Soit $a \in \mathbb{R}_+^*$. Étudier la convergence de l'intégrale

$$I_a = \int_0^{+\infty} \left(\exp\left(\frac{\sin^2(t)}{t^a}\right) - 1 \right) dt.$$

Exercice 12 - Intégrales de Hardy: Pour $\alpha \in \mathbb{R}_+$ et $\beta \in \mathbb{R}_+^*$, on considère l'intégrale

$$I_{\alpha,\beta} = \int_0^{+\infty} \frac{t^{\alpha} dt}{1 + t^{\beta} \sin^2(t)}.$$

1. Pour tout $x \in \mathbb{R}$ avec x > -1, calculer l'intégrale

$$\varphi(x) = \int_0^{\pi} \frac{\mathrm{d}t}{1 + x \sin^2(t)}.$$

2. Déterminer un équivalent de la suite $(I_n)_{n \in \mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, \quad I_n = \int_{n\pi}^{(n+1)\pi} \frac{t^{\alpha} dt}{1 + t^{\beta} \sin^2(t)}.$$

- 3. En déduire que l'intégrale $I_{\alpha,\beta}$ converge si et seulement si $\beta > 2\alpha + 2$.
- 4. Étudier la limite en $+\infty$ de la fonction intégrée dans $I_{\alpha,\beta}$.

Exercice 13: Soit $f:[0,+\infty[\to\mathbb{R} \text{ continue telle que } \int_0^{+\infty} f(t) dt \text{ converge.}$

1. Montrer que si $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ sont des suites tendant vers $+\infty$, alors

$$\lim_{n\to+\infty}\int_{x_n}^{y_n}f(t)\,\mathrm{d}t=0.$$

2. En déduire que que $\int_{0}^{+\infty} e^{-t \sin(t)} dt$ diverge.

I.B - Exercices théoriques

Exercice 14: Soit $f:[1,+\infty[\to\mathbb{R}]]$ une fonction continue telle que $\int_1^{+\infty} f(t) dt$ converge. Montrer que l'intégrale $\int_{1}^{+\infty} \frac{f(t)}{t} dt$ converge.

Exercice 15: Soit $f:[1,+\infty[\to\mathbb{R}]]$ une fonction continue telle que $\int_0^{+\infty} f(t) dt$ converge. Montrer que pour tout $a \in \mathbb{R}_+^*$, l'intégrale $\int_0^{+\infty} \frac{f(t)}{1+t^a} dt$ converge.

Exercice 16: Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et T-périodique avec $T \in \mathbb{R}^+_+$. Montrer que l'on a l'équivalence

$$\int_{T}^{+\infty} \frac{f(t)}{t} dt \text{ converge} \quad \Leftrightarrow \quad \int_{0}^{T} f(t) dt = 0.$$

Exercice 17: Soit $f:[0,+\infty]\to\mathbb{R}$ une fonction continue, positive et décroissante. On considère la fonction $g:[0,+\infty]\to\mathbb{R}$ définie par

$$\forall x \in [0, +\infty[, g(x) = f(x)\sin(x).$$

Montrer que la fonction *g* est intégrable si et seulement si *f* est intégrable.

Exercice 18: On considère une fonction continue $f:[0,+\infty[\to\mathbb{R} \text{ et on note}]$

$$\forall \lambda \in \mathbb{R}, \quad I_{\lambda} = \int_{0}^{+\infty} f(t) e^{-\lambda t} dt.$$

Montrer que s'il existe $a \in \mathbb{R}$ tel que l'intégrale I_a converge, alors l'intégrale I_{λ} converge pour tout $\lambda > a$.

Exercice 19: Soit $f: \mathbb{R} \to \mathbb{R}^+$ une fonction continue et intégrable. Montrer que la fonction $t \mapsto f(t-1/t)$ est intégrable sur $]-\infty,0[$ et sur $]0,+\infty[$ et que l'on a

$$\int_{-\infty}^{0} f\left(t - \frac{1}{t}\right) dt + \int_{0}^{+\infty} f\left(t - \frac{1}{t}\right) dt = \int_{0}^{+\infty} f(t) dt.$$

Exercice 20: Soit $f:[a,b] \to \mathbb{R}_+$ une fonction continue et croissante. On note

$$I = \int_{a}^{b} f(t) dt \quad \text{et} \quad \forall n \in \mathbb{N}^{*}, \quad S_{n} = \frac{b-a}{n} \sum_{k=0}^{n} f\left(\frac{k(b-a)}{n}\right).$$

- 1. Montrer que si I converge, alors la suite $(S_n)_{n \in \mathbb{N}^*}$ converge vers I.
- 2. Montrer que si *I* diverge, alors la suite $(S_n)_{n \in \mathbb{N}^*}$ diverge vers $+\infty$.

Exercice 21: Soit $f:[0,+\infty[\to\mathbb{R}]]$ continue et strictement positive telle que

$$\exists \ell \in [0,1[, \lim_{x \to +\infty} \frac{f(x+1)}{f(x)} = \ell.$$

Montrer que f est intégrable sur $[0, +\infty[$.

Exercice 22: Soit $f:[0,+\infty[\to\mathbb{R}]]$ de classe \mathscr{C}^1 et strictement positive telle que

$$\exists a \in \mathbb{R}_{-}^{*}, \quad \lim_{x \to +\infty} \frac{f'(x)}{f(x)} = a.$$

Montrer que les fonctions f et f' sont intégrables sur $[0, +\infty[$.

Exercice 23: Soit $f:[0,+\infty[\to\mathbb{R}$ continue et positive telle que $t\mapsto tf(t)$ est intégrable. On définit la fonction $g:[0,+\infty[\to\mathbb{R}$ par

$$\forall x \in [0, +\infty[, g(x) = \int_{x}^{+\infty} f(t) dt.$$

- 1. Montrer que g est bien définie et que g(x) = o(1/x) lorsque $x \to +\infty$.
- 2. Montrer que $\int_0^{+\infty} g(t) dt = \int_0^{+\infty} t f(t) dt.$

Exercice 24: Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction de classe \mathscr{C}^1 vérifiant f(0)=0.

- 1. Montrer que la fonction $t \mapsto f(t)/t$ se prolonge par continuité en 0.
- 2. Montrer que pour tout $x \in \mathbb{R}_+^*$, on a

$$\int_0^x \left(\frac{f(t)}{t}\right)^2 \leqslant 2 \int_0^x \frac{f(t)f'(t)}{t} dt.$$

3. Montrer que si la fonction f' est de carré intégrable sur $[0, +\infty[$, alors la fonction $t \mapsto f(t)/t$ est de carré intégrable sur $[0, +\infty[$ et on a

$$\int_0^{+\infty} \left(\frac{f(t)}{t}\right)^2 dt \le 4 \int_0^{+\infty} f'(t)^2 dt.$$

Exercice 25 : Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue. On fixe $T \in \mathbb{R}_+^*$ et on définit la fonction $g : \mathbb{R} \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}, \quad g(x) = \frac{1}{T} \int_{x}^{x+T} f(t) dt.$$

Montrer que si $\int_{-\infty}^{+\infty} f(t) dt$ converge, alors $\int_{-\infty}^{+\infty} g(t) dt$ converge et on a

$$\int_{-\infty}^{+\infty} g(t) dt = \int_{-\infty}^{+\infty} f(t) dt.$$

Exercice 26 - Inégalité de Hardy : Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction continue de carré intégrable. On considère la fonction $g:\mathbb{R}_+^*\to\mathbb{R}$ définie par

$$\forall x \in \mathbb{R}_+^*, \quad g(x) = \frac{1}{x} \int_0^x f(t) dt.$$

- 1. Montrer que g se prolonge par continuité en 0.
- 2. Montrer que pour tout $A \in \mathbb{R}_+$, on a l'inégalité

$$\int_0^A g^2(t) dt \leqslant 2 \int_0^A f(t) g(t) dt.$$

3. En déduire que g^2 est intégrable sur $[0, +\infty[$ et que

$$\int_0^{+\infty} g(t)^2 dt \leqslant 4 \int_0^{+\infty} f(t)^2 dt.$$

4. Montrer que fg est intégrable sur $[0, +\infty[$ et que

$$\int_0^{+\infty} g^2(t) dt = 2 \int_0^{+\infty} f(t)g(t) dt.$$

Exercice 27 - Inégalité de Kolmogorov : Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathscr{C}^2 telle que f et f'' sont de carrés intégrables.

- 1. Montrer que ff'' est intégrable.
- 2. En déduire que f(x) f'(x) admet une limite ℓ en $+\infty$ et que $\ell = 0$.
- 3. Conclure que f' est de carré intégrable et que

$$\int_{-\infty}^{+\infty} f'(t) \, \mathrm{d}t \leqslant \left(\int_{-\infty}^{+\infty} f(t) \, \mathrm{d}t \right) \left(\int_{-\infty}^{+\infty} f''(t) \, \mathrm{d}t \right).$$

Partie II Calcul d'intégrales

Exercice 28 : Montrer que les intégrales suivantes sont convergentes et calculer leur valeur.

$$(i) \int_{0}^{+\infty} \frac{\mathrm{d}t}{(t+1)(t+2)}, \qquad (ii) \int_{0}^{+\infty} \frac{\mathrm{d}t}{t^{2}+t+1}, \qquad (iii) \int_{0}^{1} \frac{\ln(1-t^{2})}{t^{2}} \, \mathrm{d}t,$$

$$(iv) \int_{0}^{+\infty} \ln\left(1+\frac{1}{t^{2}}\right) \, \mathrm{d}t, \qquad (v) \int_{0}^{+\infty} \frac{\ln(t)}{(1+t)^{2}} \, \mathrm{d}t, \qquad (vi) \int_{0}^{1} \frac{\ln(t)}{\sqrt{t}} \, \mathrm{d}t,$$

$$(vii) \int_{0}^{1} \sin(\ln(t)) \, \mathrm{d}t, \qquad (viii) \int_{0}^{+\infty} \frac{\mathrm{e}^{-\sqrt{t}}}{\sqrt{t}} \, \mathrm{d}t, \qquad (ix) \int_{1}^{+\infty} \frac{\mathrm{d}t}{\sin(t)},$$

$$(x) \int_{0}^{+\infty} \frac{\mathrm{d}t}{\sqrt{\mathrm{e}^{t}-1}}, \qquad (xi) \int_{0}^{1} \frac{\mathrm{d}t}{\sqrt{t(1-t)}}, \qquad (xii) \int_{1}^{+\infty} \frac{\mathrm{d}t}{t^{2}\sqrt{1+t^{2}}}.$$

Exercice 29 : Montrer que les intégrales suivantes sont convergentes et calculer leur valeur.

(i)
$$\int_0^{+\infty} \frac{dt}{(e^t + 1)(e^{-t} + 1)}$$
, (ii) $\int_0^{\pi/2} \sqrt{\tan(t)} dt$,
(iii) $\int_0^{+\infty} \frac{dt}{5 \cosh(t) + 3 \sinh(t) + 4}$, (iv) $\int_0^{+\infty} \frac{t \operatorname{Arctan}(t)}{(1 + t^2)^2} dt$.

Exercice 30 : On note φ la racine positive de $X^2 - X - 1$. Montrer que l'intégrale suivante est convergente et calculer sa valeur.

$$I = \int_0^{+\infty} \frac{\mathrm{d}t}{(1 + t^{\varphi})^{\varphi}}.$$

Exercice 31 : Pour $a \in \mathbb{R}$ avec a > 0, on considère les intégrales

$$I = \int_0^{+\infty} \cos(t) e^{-at} dt \quad \text{et} \quad J = \int_0^{+\infty} \sin(t) e^{-at} dt.$$

Montrer que les intégrales I et J sont convergentes et calculer leur valeur.

Exercice 32 : Soit $a \in]-1,+\infty[$ et $b \in \mathbb{R}^*$ avec $|b| \neq 1$. Montrer que les intégrales suivantes sont convergentes et calculer leur valeur.

(i)
$$I_a = \int_0^{\pi/2} \frac{\mathrm{d}t}{1 + a\sin^2(t)}$$
, (ii) $J_b = \int_0^{\pi/2} \frac{\mathrm{d}t}{1 + b\tan^2(t)}$.

Exercice 33 : Soit $a \in]0,2\pi[$. Justifier la convergence et calculer l'intégrale

$$I_a = \int_{-\infty}^{+\infty} \frac{\sin(a)}{\operatorname{ch}(t) - \cos(a)} \, \mathrm{d}t.$$

Exercice 34 : Soit $(a, b) \in \mathbb{R}^2$. On considère l'intégrale

$$I = \int_0^{+\infty} \left(\sqrt{t} + a\sqrt{t+1} + b\sqrt{t+2} \right) dt.$$

- 1. Déterminer une condition nécessaire et suffisante sur $(a,b) \in \mathbb{R}^2$ pour que l'intégrale I soit convergente.
- 2. Calculer l'intégrale *I* sous cette condition.

Exercice 35 : Soit $a \in \mathbb{R}_+^*$. Justifier la convergence et calculer l'intégrale

$$I_a = \int_0^1 \frac{\mathrm{d}t}{\sqrt{(1-t)(1+at)}}.$$

Exercice 36 : Soit $n \in \mathbb{N}$ avec $n \ge 2$. Justifier la convergence et calculer l'intégrale

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(t+1)(t+2)\cdots(t+n)}.$$

Exercice 37 : Soit $(p,q) \in \mathbb{R}^2$ tel que $p^2 < 4q$. Montrer que l'intégrale ci-dessous est convergente et calculer sa valeur.

$$I = \int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{t^2 + pt + q}.$$

Exercice 38: Soit $b \in \mathbb{R}$ avec $|b| \neq 1$. Montrer que l'intégrale ci-dessous est convergente et calculer sa valeur.

$$I = \int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{1 + (t + \mathrm{i}b)^2}.$$

Exercice 39 : Soit $a \in \mathbb{R}$. Déterminer pour quelle valeur de a l'intégrale ci-dessous converge, puis calculer là en cas de convergence.

$$I_a = \int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{t^2 + at + 1}.$$

Exercice 40: Soit $(a, b) \in \mathbb{R}^2$ avec a > 0 et b > 0. Montrer que l'intégrale ci-dessous est convergente et calculer sa valeur.

$$I_{a,b} = \int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(t^2 + a^2)(t^2 + b^2)}.$$

Exercice 41: Justifier la convergence et calculer l'intégrale

$$I = \int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+\mathrm{i}t)}.$$

Exercice 42: On considère les intégrales

$$I = \int_{-\infty}^{+\infty} \frac{dt}{(1 + e^t)(1 + t^2)} \quad \text{et} \quad J = \int_{-\infty}^{+\infty} \frac{e^t dt}{(1 + e^t)(1 + t^2)}.$$

- 1. Montrer que I et J convergent, puis que I = J.
- 2. En déduire la valeur de *I*.

Exercice 43 : Soit $a \in \mathbb{R}_+^*$. Justifier la convergence et calculer l'intégrale

$$I_a = \int_0^{+\infty} (t - \lfloor t \rfloor) e^{-at} dt.$$

Exercice 44: Justifier la convergence et calculer l'intégrale

$$I = \int_{1}^{+\infty} \left(\frac{1}{|t|} - \frac{1}{t} \right) dt.$$

Exercice 45 : Justifier la convergence et calculer l'intégrale

$$I = \int_{1}^{+\infty} \frac{t - \lfloor t \rfloor}{t^2} \, \mathrm{d}t.$$

Exercice 46 : Montrer que l'intégrale $I = \int_1^{+\infty} \frac{(-1)^{\lfloor t \rfloor}}{t} dt$ est convergente et que

$$I = \sum_{k=1}^{+\infty} (-1)^k \ln\left(1 + \frac{1}{k}\right) = \ln\left(\frac{2}{\pi}\right).$$

Exercice 47: On considère les intégrales

$$I = \int_0^{+\infty} \frac{\mathrm{d}t}{1+t^3} \quad \text{et} \quad J = \int_0^{+\infty} \frac{t \, \mathrm{d}t}{1+t^3}.$$

- 1. Montrer que I et J convergent, puis que I = J.
- 2. En déduire la valeur de *I*.

Exercice 48: On considère les intégrales

$$I = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^4}, \quad J = \int_0^{+\infty} \frac{t \, \mathrm{d}t}{1 + t^4} \quad \text{et} \quad K = \int_0^{+\infty} \frac{t^2 \, \mathrm{d}t}{1 + t^4}.$$

- 1. Montrer que *J* converge et calculer sa valeur.
- 2. Montrer que I et K convergent et que I = K.
- 3. En factorisant $1 + t^4$, déterminer la valeur de I.

Exercice 49 : Soit $a \in \mathbb{R}_+^*$. On considère les intégrales

$$I_a = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)(1+t^a)}$$
 et $J_a = \int_0^{+\infty} \frac{t^a \, \mathrm{d}t}{(1+t^2)(1+t^a)}$.

- 1. Montrer que les intégrales I_a et J_a sont convergentes.
- 2. En posant u = 1/t, montrer que $I_a = J_a$.
- 3. Calculer $I_a + J_a$. En déduire la valeur de I_a et J_a .

Exercice 50 : Pour $a \in \mathbb{R}$ avec a > 0, on considère l'intégrale

$$I_a = \int_0^{+\infty} \frac{\ln(t)}{a^2 + t^2} \, \mathrm{d}t.$$

- 1. Montrer que l'intégrale I_a est convergente pour tout $a \in \mathbb{R}_+^*$.
- 2. En posant u = 1/t, montrer que $I_1 = 0$.
- 3. En posant t = au, calculer la valeur de I_a pour $a \in \mathbb{R}_+^*$.

Exercice 51 - Intégrales de Frullani : Soit $(a,b) \in \mathbb{R}^2$ avec 0 < a < b. Montrer que les intégrales suivantes sont convergentes et calculer leur valeur.

$$I = \int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx, \qquad J = \int_0^{+\infty} \frac{\operatorname{Arctan}(bx) - \operatorname{Arctan}(ax)}{x} dx.$$

Exercice 52 - Intégrales de Frullani : Soit $f:]0, +\infty[\to \mathbb{R}$ une fonction continue admettant une limite finie L en $+\infty$ et une limite finie ℓ en 0. On considère un couple $(a,b) \in \mathbb{R}^2$ vérifiant 0 < a < b et les intégrales

$$I = \int_0^{+\infty} \frac{f(at) - f(bt)}{t} dt$$
 et $J = \int_0^1 \frac{t - 1}{\ln(t)} dt$.

- 1. Montrer que l'intégrale *I* est convergente et calculer sa valeur.
- 2. En déduire que l'intégrale *J* converge et calculer sa valeur.

Exercice 53 - Intégrales de Frullani : Soient $f:[0,+\infty[\to \mathbb{R}$ une fonction continue, un couple $(a,b) \in \mathbb{R}^2$ avec 0 < a < b et les intégrales

$$I = \int_1^{+\infty} \frac{f(t)}{t} dt \quad \text{et} \quad J = \int_0^{+\infty} \frac{f(at) - f(bt)}{t} dt.$$

On suppose que l'intégrale *I* est convergente.

1. Montrer que pour tout $x \in \mathbb{R}_+^*$, on a

$$\int_{x}^{+\infty} \frac{f(at) - f(bt)}{t} dt = \int_{ax}^{bx} \frac{f(t)}{t} dt.$$

2. En déduire que l'intégrale J converge et calculer sa valeur.

Exercice 54: On considère les intégrales

$$I = \int_0^{+\infty} \exp\left(-\left(t - \frac{1}{t}\right)^2\right) dt \quad \text{et} \quad J = \int_0^{+\infty} e^{-t^2} dt.$$

1. Montrer que l'intégrale I est convergente et que

$$I = \int_{1}^{+\infty} \left(1 + \frac{1}{t^2} \right) \exp\left(-\left(t - \frac{1}{t} \right)^2 \right) dt.$$

2. Montrer que l'intégrale *J* est convergente et exprimer *I* en fonction de *J*.

Exercice 55: Soit $a \in \mathbb{R}^*_{\perp}$. On considère les intégrales

$$I_a = \int_0^{+\infty} \exp\left(-\left(t^2 + \frac{a^2}{t^2}\right)\right) dt$$
 et $J = \int_0^{+\infty} e^{-t^2} dt$.

1. Montrer que l'intégrale I_a est convergente et que

$$I_a = \int_{\sqrt{a}}^{+\infty} \left(1 + \frac{a}{t^2} \right) \exp\left(-\left(t^2 + \frac{a^2}{t^2} \right) \right) dt.$$

2. Montrer que l'intégrale J est convergente et exprimer I_a en fonction de J.

Exercice 56: On considère la fonction $F:[0,1] \to \mathbb{R}$ définies par

$$\forall x \in [0,1], \quad F(x) = \int_0^x \frac{t-1}{\ln(t)} dt.$$

- 1. Montrer que F(x) existe pour tout $x \in [0, 1]$.
- 2. Montrer que pour tout $x \in [0, 1]$, on a

$$F(x) = \int_{x}^{x^2} \frac{\mathrm{d}t}{\ln(t)}.$$

3. En déduire la valeur de F(1).

Exercice 57 - Intégrales d'Euler: On considère les intégrales

$$I = \int_0^{\pi/2} \ln(\sin(t)) dt$$
 et $J = \int_0^{\pi/2} \ln(\cos(t)) dt$.

- 1. Montrer que les intégrales *I* et *J* sont convergentes.
- 2. Montrer que I = J.
- 3. Calculer I + J. En déduire la valeur de I et J.

Exercice 58 : Pour tout $x \in \mathbb{R}_+^*$, on considère les intégrales

$$I = \int_0^{+\infty} \frac{\sin^3(t)}{t^2} dt$$
 et $I(x) = \int_x^{+\infty} \frac{\sin^3(t)}{t^2} dt$.

- 1. Montrer que I et I(x) sont convergentes pour tout $x \in \mathbb{R}^*_+$.
- 2. En linéarisant sin³, montrer que

$$\forall x \in \mathbb{R}_+^*, \quad I(x) = \frac{3}{4} \int_x^{3x} \frac{\sin(t)}{t^2} dt.$$

3. En déduire la valeur de l'intégrale *I*.

Exercice 59 : Soit $a \in \mathbb{R}$. Justifier la convergence et calculer l'intégrale

$$I = \int_{-\infty}^{+\infty} \left(\operatorname{Arctan}(t+a) - \operatorname{Arctan}(t) \right) dt.$$

Exercice 60 : Soient $a \in \mathbb{R}$ et $f : \mathbb{R} \to \mathbb{R}$ une fonction continue admettant une limite finie ℓ en $+\infty$ et une limite finie ℓ' en $-\infty$. Montrer que l'intégrale ci-dessous est convergente et calculer sa valeur.

$$I = \int_{-\infty}^{+\infty} (f(t+a) - f(t)) dt.$$

Partie III Intégrabilité et comportement asymptotique

Exercice 61 : Soit $f:[0,+\infty[\to \mathbb{R}]]$ une fonction continue et intégrable. Montrer que si f admet une limite en $+\infty$, alors cette limite est nulle.

Exercice 62: Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction de classe \mathscr{C}^1 telle que f et f' sont intégrables. Montrer que f tend vers 0 en $+\infty$.

Exercice 63: Soit $f:[0,+\infty[\to\mathbb{R} \text{ continue et intégrable. Montrer qu'il existe une suite } (x_n)_{n\in\mathbb{N}}$ d'éléments de \mathbb{R}_+ telle que $x_n\xrightarrow[n\to+\infty]{} +\infty$ et $x_nf(x_n)\xrightarrow[n\to+\infty]{} 0$.

Exercice 64 : Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction uniformément continue et intégrable. Montrer que f admet une limite nulle en $+\infty$.

Exercice 65 : Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction continue et décroissante telle que l'intégrale $\int_0^{+\infty} f(t) dt$ converge. Montrer que f(x) = o(1/x) en $+\infty$.

Exercice 66 : Soit $f:[0,+\infty[\to\mathbb{R}]$ de classe \mathscr{C}^2 telle que f et f'' sont intégrables.

- 1. Montrer que f' tend vers 0 en $+\infty$.
- 2. En déduire que la fonction f f' est intégrable.

Exercice 67 : Soit $f: [0, +\infty[\to \mathbb{R} \text{ une fonction continue telle que } \int_0^{+\infty} f(t) dt$ converge. Montrer que $\int_0^x t f(t) dt = o(x)$ lorsque $x \to +\infty$.

Exercice 68: Soit $f:[0,+\infty[\to\mathbb{R}]]$ une fonction continue de carré intégrable. Montrer que $\int_0^x f(t) dt = o(\sqrt{x})$ lorsque $x \to +\infty$.

Partie IV Suites définies par une intégrale

Exercice 69 : Pour tout $n \in \mathbb{N}$, on considère l'intégrale

$$I_n = \int_0^{+\infty} t^n e^{-t} dt.$$

- 1. Montrer que l'intégrale I_n est convergente pour tout $n \in \mathbb{N}$.
- 2. Calculer la valeur de I_n pour tout $n \in \mathbb{N}$.

Exercice 70 : Pour tout $n \in \mathbb{N}$, on considère l'intégrale

$$I_n = \int_0^{+\infty} t^n \mathrm{e}^{-t^2} \, \mathrm{d}t.$$

- 1. Montrer que l'intégrale I_n est convergente pour tout $n \in \mathbb{N}$.
- 2. Calculer la valeur de I_n en fonction de I_0 pour tout $n \in \mathbb{N}$.

Exercice 71 : Pour tout $(n, p) \in \mathbb{N}^2$, on considère l'intégrale

$$I_{n,p} = \int_0^1 t^n \ln^p(t) dt.$$

- 1. Montrer que l'intégrale $I_{n,p}$ est convergente pour tout $(n,p) \in \mathbb{N}^2$.
- 2. Calculer la valeur de $I_{n,p}$ pour tout $(n,p) \in \mathbb{N}^2$.

Exercice 72: Pour tout $n \in \mathbb{N}^*$, on considère l'intégrale

$$I_n = \int_0^{\pi/2} \frac{\sin(2nt)}{\tan(t)} dt.$$

Pour tout $n \in \mathbb{N}^*$, montrer que I_n converge et calculer sa valeur.

Exercice 73: Pour tout $n \in \mathbb{N}$, on considère l'intégrale

$$I_n = \int_0^1 \frac{(1-t)^n}{\sqrt{t}} \, \mathrm{d}t.$$

- 1. Montrer que l'intégrale I_n est convergente pour tout $n \in \mathbb{N}$.
- 2. Montrer que l'on a la relation

$$\forall n \in \mathbb{N}, \quad I_{n+1} = \frac{2n+2}{2n+3}I_n.$$

3. En déduire la valeur de l'intégrale I_n .

Exercice 74: Pour tout $n \in \mathbb{N}$, on considère l'intégrale

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{(1+t^2)^{n+1}}.$$

Pour tout $n \in \mathbb{N}$, montrer que I_n converge et calculer sa valeur.

Exercice 75 : Pour tout $n \in \mathbb{N}^*$, on considère l'intégrale

$$I_n = \int_0^{\pi/2} \cos(2nt) \ln(\sin(t)) dt.$$

- 1. Montrer que l'intégrale I_n converge pour tout $n \in \mathbb{N}^*$.
- 2. Calculer $2nI_n (2n+2)I_{n+1}$ pour tout $n \in \mathbb{N}^*$.
- 3. En déduire une expression de I_n pour tout $n \in \mathbb{N}^*$.

Exercice 76 : Soit $a \in]0, \pi[$. Pour tout $n \in \mathbb{N}$, on considère l'intégrale

$$I_n = \int_0^{\pi} \frac{\cos(nt)}{1 - \sin(a)\cos(t)} dt.$$

- 1. Montrer que l'intégrale I_n converge pour tout $n \in \mathbb{N}$.
- 2. Exprimer $I_{n+2} + I_n$ en fonction de I_{n+1} .
- 3. En déduire une expression de I_n pour tout $n \in \mathbb{N}$.

Exercice 77 : Pour tout $n \in \mathbb{N}$, on considère l'intégrale

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}t}{1 + t^n}.$$

- 1. Montrer que l'intégrale I_n converge pour tout $n \in \mathbb{N}$.
- 2. Pour tout $n \in \mathbb{N}$, déterminer $f_n : [0,1] \to \mathbb{R}$ telle que $I_n = \int_0^1 f_n(u) du$.
- 3. Montrer que $I_n = 1 + o(1/n)$.

Exercice 78: Pour tout $n \in \mathbb{N}$, on considère l'intégrale

$$I_n = \int_0^1 t^n \ln(1-t) \, \mathrm{d}t.$$

- 1. Montrer que l'intégrale I_n converge pour tout $n \in \mathbb{N}$.
- 2. Déterminer un équivalent de la suite $(I_n)_{n \in \mathbb{N}}$.

Exercice 79: Pour tout $n \in \mathbb{N}$, on considère l'intégrale

$$I_n = \int_0^{+\infty} \frac{\mathrm{d}x}{(1+x^3)^{n+1}}.$$

- 1. Montrer que I_n converge pour tout $n \in \mathbb{N}$ et calculer I_0 .
- 2. En calculant $I_{n+1} I_n$, établir une relation de récurrence entre I_{n+1} et I_n .
- 3. Montrer qu'il existe A > 0 telle que $I_n \sim \frac{a}{\sqrt[3]{n}}$.

Exercice 80 : On considère l'intégrale $I = \int_0^1 \frac{e^t}{t} dt$.

- 1. Étudier la nature de l'intégrale *I*.
- 2. Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique réel $u_n \in]0,1]$ tel que

$$\int_{u_n}^1 \frac{\mathrm{e}^t}{t} \, \mathrm{d}t = n.$$

3. Déterminer un équivalent de la suite $(u_n)_{n \in \mathbb{N}^*}$.

Partie V Intégration des relations de comparaison

Exercice 81 : Déterminer un équivalent en 1⁻ de la fonction Arccos.

Exercice 82: On considère la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \int_x^{+\infty} \frac{\sin(t)}{t} dt.$$

Montrer que f(x) = O(1/x) en $+\infty$.

Exercice 83 : Déterminer un équivalent en $+\infty$ de la fonction $f:\mathbb{R}\to\mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \int_{x}^{+\infty} e^{-t^2} dt.$$

Exercice 84: Déterminer un équivalent en $+\infty$ de $f:]0, +\infty[\to \mathbb{R}$ définie par

$$\forall x \in]0, +\infty[, \quad f(x) = \int_x^{+\infty} \frac{e^{-t}}{t} dt.$$

Exercice 85: Déterminer un développement asymptotique en $+\infty$ à trois termes de la fonction $f:[1,+\infty[\to\mathbb{R}$ définie par

$$\forall x \in [1, +\infty[, f(x) = \int_1^x \frac{e^t}{t} dt.$$

Exercice 86: Soit $f:[1,+\infty[\to\mathbb{R}]]$ la fonction définie par

$$\forall x \in [1, +\infty[, \quad f(x) = \int_1^x \frac{\ln(1+t)}{t} dt.$$

Montrer qu'il existe une constante $A \in \mathbb{R}$ tel que en $+\infty$, on a

$$f(x) = \frac{1}{2}\ln^2(x) + A - \frac{1}{x} + o\left(\frac{1}{x}\right).$$

Exercice 87 : Soit $n \in \mathbb{N}^*$. Déterminer un développement asymptotique à n termes en $+\infty$ de la fonction Li : $[2, +\infty[\to \mathbb{R}]$ définie par

$$\forall x \in [2, +\infty[, Li(x) = \int_2^x \frac{dt}{\ln(t)}.$$

Partie VI Fonctions définies par une intégrale

Exercice 88 : On définit la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \int_0^1 \frac{t^{x-1}}{1+t} \, \mathrm{d}t.$$

- 1. Montrer que f(x) existe pour tout $x \in \mathbb{R}_+^*$.
- 2. Étudier la monotonie de f.
- 3. Calculer f(x) + f(x+1) pour $x \in \mathbb{R}_+^*$.
- 4. Déterminer un équivalent de f en $+\infty$ et en 0^+ .

Exercice 89: On définit la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \int_1^x \frac{\cos^2(t)}{t} dt.$$

- 1. Montrer que f(x) existe pour tout $x \in \mathbb{R}_+^*$.
- 2. Déterminer un équivalent de f en 0^+ et en $+\infty$.

Exercice 90: On définit la fonction cosinus intégrale Ci: $\mathbb{R}^*_{\perp} \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}_+^*, \quad \operatorname{Ci}(x) = -\int_x^{+\infty} \frac{\cos(t)}{t} \, \mathrm{d}t.$$

- 1. Montrer que Ci(x) existe pour tout $x \in \mathbb{R}_+^*$.
- 2. Montrer qu'il existe une constante $\gamma \in \mathbb{R}$ telle que

$$\forall \in \mathbb{R}_+^*$$
, $Ci(x) = \ln(x) + \gamma + \sum_{n=1}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!(2n)}$.

Exercice 91 : On définit la fonction $f : \mathbb{R} \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}, \quad f(x) = \int_{x}^{+\infty} e^{-t^2} dt.$$

- 1. Montrer que l'ensemble de définition de f est \mathbb{R} .
- 2. Montrer $f(x) = o(x^{-1})$ en $+\infty$.
- 3. Montrer que $\int_0^{+\infty} f(t) dt$ est convergente et calculer sa valeur.

Exercice 92: On definit la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \int_x^{+\infty} \frac{\mathrm{e}^{-t}}{t} \, \mathrm{d}t.$$

- 1. Montrer que l'ensemble de définition de f est \mathbb{R}_+^* .
- 2. Montrer que f est de classe \mathscr{C}^1 et calculer sa dérivée.
- 3. Montrer $f(x) = o(x^{-1})$ en $+\infty$.
- 4. Montrer qu'il existe une constante $\gamma \in \mathbb{R}$ telle que

$$\forall \in \mathbb{R}_{+}^{*}, \quad f(x) = -\ln(x) - \gamma - \sum_{n=1}^{+\infty} (-1)^{n} \frac{x^{n}}{n! n}.$$

5. Montrer que $\int_0^{+\infty} f(t) dt$ est convergente et calculer sa valeur.

Exercice 93: On définit la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \int_x^{+\infty} \frac{\sin(t)}{t} dt.$$

- 1. Montrer que l'ensemble de définition de f est \mathbb{R}_+^* .
- 2. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et calculer sa dérivée.
- 3. Montrer que $\int_0^{+\infty} f(t) dt$ est convergente et calculer sa valeur.

Exercice 94: On définit la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \int_x^{+\infty} \frac{\cos(t)}{t} dt.$$

- 1. Montrer que l'ensemble de définition de f est \mathbb{R}_+^* .
- 2. Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et calculer sa dérivée.
- 3. Montrer que $\int_0^{+\infty} f(t) dt$ est convergente et calculer sa valeur.

Exercice 95: On définit $f:[1,+\infty[\to \mathbb{R}]]$ par

$$\forall x \in [1, +\infty[, \quad f(x) = \int_1^x \frac{t}{\sqrt{1 - t^3}} dt.$$

- 1. Montrer que f est bien définie et continue sur $[1, +\infty[$.
- 2. Dresser le tableau de variation de f sur $[1, +\infty[$.
- 3. Montrer que f réalise une bijection de $[1, +\infty[$ sur $[0, +\infty[$ et que f^{-1} est solution de l'équation différentielle $y'y = \sqrt{y^3 1}$ sur $[0, +\infty[$.

Exercice 96: On définit la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^1 \exp(ixt^2) dt \quad \text{et} \quad I = \int_0^{+\infty} \exp(it^2) dt.$$

- 1. Montrer que l'intégrale *I* est convergente et que sa valeur est non nulle.
- 2. Déterminer un équivalent de f(x) en $+\infty$.

Exercice 97 - Lemme de Riemann-Lebesgue : Soit $f : \mathbb{R}_+ \to \mathbb{R}$ une fonction intégrable de classe \mathscr{C}^1 .

- 1. Pour tout $A \in \mathbb{R}_+^*$, montrer que $\lim_{x \to +\infty} \int_0^A f(t) \cos(xt) dt = 0$.
- 2. En déduire que $\lim_{x \to +\infty} \int_0^{+\infty} f(t) \cos(xt) dt = 0$.

Exercice 98: On considère la fonction $f: \mathbb{R}_+^* \to \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \int_0^x \frac{|\sin(t)|}{t} dt.$$

Déterminer un équivalent de f en $+\infty$.

— Solutions partielles —

Exercice 1 : Les intégrales convergentes sont les suivantes.

(i), (iv), (v), (vi), (vii), (viii), (ix), (xi), (xii), (xiv), (xv).

Exercice 2 : Les intégrales convergentes sont (*i*) et (*ii*).

Exercice 3:

- (i) L'intégrale I_a converge si et seulement si 2 < a < 4.
- (*ii*) L'intégrale J_a converge si et seulement si -1 < a < 1.

Exercice 4 : L'intégrale $I_{a,b}$ converge si et seulement si a > 1 ou (a = 1 et b > 1).

Exercice 8 : En utilisant un développement limité, on trouve que I_a converge si et seulement si a > 1/2.

Exercice 9 : On note I_a l'intégrale étudiée.

(i) Si $a \geqslant 1$, on montre que I_a diverge avec un équivalent en 0^+ . Si 0 < a < 1, on montre que I_a converge en utilisant un équivalent en 0^+ et une intégration par parties. Si $a \leqslant 0$, l'intégrale I_a diverge, car pour tout $n \in \mathbb{N}^*$, on a

$$\int_{2n\pi}^{(2n+1)\pi} \frac{\sin(t)}{t^a} dt \geqslant (2n\pi)^{-a} \int_0^{\pi} \sin(t) dt \xrightarrow[n \to +\infty]{} +\infty.$$

- (*ii*) En utilisant les mêmes méthodes que pour (*i*), on montrer I_a converge si et seulement si 0 < a < 2.
- (*iii*) En utilisant le changement de variable $u = t^a$ si $a \ne 0$, on se ramène au cas (*i*). On en déduit que l'intégrale I_a converge si et seulement si a > 1.
- (*iv*) En utilisant le changement de variable $u = t^a$ si $a \ne 0$, on se ramène au cas (*ii*). On en déduit que l'intégrale I_a converge si et seulement si |a| > 1.

Exercice 10 : Soit $a \in \mathbb{R}_+^*$ tel que P' n'a pas de racines dans $[a, +\infty[$. En utilisant une intégration par parties, on a pour tout $x \in [a, +\infty[$ que

$$\int_{a}^{x} \cos(P(t)) dt = \left[\frac{\sin(P(t))}{P'(t)} \right]_{a}^{x} + \int_{a}^{x} \frac{\sin(P(t))P''(t)}{P'(t)^{2}} dt,$$

ce qui permet de conclure avec les règles de comparaisons.

Exercice 11 : La fonction est intégrable en 0^+ si et seulement si $\alpha \le 2$ et en $+\infty$ si et seulement si $\alpha > 1$.

Exercice 12:

- 1. En posant $u = \tan(t)$, on obtient que $\phi(x) = \frac{\pi}{\sqrt{x+1}}$.
- 2. En encadrant le numérateur, on obtient que $I_n \sim \pi^{1+\alpha-\beta/2} n^{\alpha-\beta/2}$.
- 4. La fonction n'admet pas de limite en $+\infty$.

Exercice 13 : Pour tout $n \in \mathbb{N}$, on a en posant $x_n = (2n+1)\pi$ et $y_n = (2n+2)\pi$ que

$$\int_{x_n}^{y_n} e^{-t \sin(t)} dt \geqslant \int_{x_n}^{y_n} 1 dt = y_n - x_n = \pi.$$

Exercice 14 : Effectuer une intégration par parties.

Exercice 15: Effectuer une intégration par parties.

Exercice 17 : Majorer l'intégrale de |f| sur $[0, n\pi]$.

Exercice 18 : Effectuer une intégration par parties.

Exercice 19: Notons $\varphi_1: \mathbb{R}^*_- \to \mathbb{R}$ et $\varphi_2: \mathbb{R}^*_+ \to \mathbb{R}$ les difféomorphismes définies par

$$\forall x \in \mathbb{R}_{-}^{*}, \quad \varphi_1(x) = x - \frac{1}{x} \quad \text{et} \quad \forall x \in \mathbb{R}_{+}^{*}, \quad \varphi_2(x) = x - \frac{1}{x}.$$

En remarquant que $\varphi_1^{-1} + \varphi_2^{-1} = \mathrm{Id}_{\mathbb{R}}$, on obtient que

$$\forall y \in \mathbb{R}, \quad 0 \leq (\varphi_1^{-1})'(y) < 1 \quad \text{et} \quad 0 \leq (\varphi_2^{-1})'(y) < 1.$$

On en déduit avec le théorème du changement de variable que $t \mapsto f(t-1/t)$ est intégrable sur $]-\infty,0[$ et sur $]0,+\infty[$, puis la relation demandée.

Exercice 21 : Par hypothèse, il existe un réel $A \in \mathbb{R}_+^*$ tel que

$$\forall x \in [A, +\infty[, f(x+1) < q f(x) \text{ avec } q = \frac{\ell+1}{2}.$$

On conclut en remarquant que pour tout $n \in \mathbb{N}$, on a

$$\int_A^{A+n} f(t) dt \leqslant \frac{1}{1-q} \int_A^{A+1} f(t) dt.$$

Exercice 22 : Pour x > 0 suffisamment grand, on a $f'(x)/f(x) \le a/2$, puis en intégrant, on obtient une majoration de f(x).

Exercice 24:

- 2. Utiliser une intégration par parties.
- 3. Utiliser l'inégalité de Cauchy-Schwarz avec la question précédente.

Exercice 25 : Si F est une primitive de f, alors pour tout $(a, b) \in \mathbb{R}^2$ avec a + T < b, on a

$$\int_{a}^{b} g(t) dt = \frac{1}{T} \left(\int_{a}^{b} F(t+T) dt - \int_{a}^{b} F(t) dt \right) = \frac{1}{T} \left(\int_{a+T}^{b+T} F(t) dt - \int_{a}^{b} F(t) dt \right)$$
$$= \frac{1}{T} \left(\int_{b}^{b+T} F(t) dt - \int_{a}^{a+T} F(t) dt \right).$$

Lorsque $a \to -\infty$ et $b \to +\infty$, l'expression précédente converge vers

$$\frac{(b+T)-b}{T}\left(\lim_{x\to+\infty}F(x)\right)-\frac{(a+T)-a}{T}\left(\lim_{x\to-\infty}F(x)\right)=\int_{-\infty}^{+\infty}f(t)\,\mathrm{d}t.$$

Exercice 26:

- 2. Utiliser une intégration par parties.
- 3. Utiliser l'inégalité de Cauchy-Schwarz avec la question précédente.
- 4. Utiliser l'intégration par parties de la seconde question.

Exercice 27 : Pour 2. et 3., utiliser une intégration par parties sur l'intégrale de la fonction $t \mapsto f'(t)^2$ sur [0, x].

Exercice 28: Les valeurs des intégrales sont les suivantes.

(i)
$$\ln(2)$$
, (ii) $\frac{2\pi}{3\sqrt{3}}$, (iii) $-2\ln(2)$, (iv) π ,

$$(v) \ 0, \qquad (vi) \ -4, \qquad (vii) \ -\frac{1}{2}, \qquad (viii) \ 2,$$

$$(ix)$$
 $\ln\left(\frac{e+1}{e-1}\right)$, (x) π , (xi) π , (xii) $\sqrt{2}-1$.

Exercice 29: Les solutions sont les suivantes.

(i)
$$\frac{1}{2}$$
 avec $u = e^t$, (ii) $\frac{\pi}{\sqrt{2}}$ avec $u = \sqrt{\tan(t)}$,

(iii)
$$\frac{1}{6}$$
 avec $u = e^t$, (iv) $\frac{\pi}{8}$ avec $u = 1/t$.

Exercice 30 : En utilisant le changement de variable u = 1/t, on obtient que I = 1.

Exercice 31 : On trouve $I = \frac{a}{a^2 + 1}$ et $J = \frac{1}{a^2 + 1}$.

Exercice 32:

- (i) En posant $u = \tan(t)$, on obtient que $I_a = \frac{\pi}{2\sqrt{1+a}}$.
- (*ii*) En posant $u = \tan(t)$, on obtient que $J_b = \frac{\pi}{2(1+|b|)}$.

Exercice 33 : On obtient que $I_a = 2(\pi - a)$.

Exercice 34 : Pour a = -2 et b = 1, on trouve $I = \frac{4}{3}(1 - \sqrt{2})$.

Exercice 35 : En posant $u = \sqrt{\frac{1-t}{1+at}}$, on obtient que $I_a = \frac{2}{\sqrt{a}} \operatorname{Arctan}(\sqrt{a})$.

Exercice 36: En utilisant une décomposition en éléments simples, on a

$$I_n = \frac{1}{n!} \sum_{k=1}^{n} (-1)^{k-1} k \binom{n}{k} \ln(k).$$

Exercice 37 : On trouve $I = \frac{2\pi}{\sqrt{4q - p^2}}$.

Exercice 38 : Si |b| < 1, alors $I = \pi$, sinon I = 0.

Exercice 39 : L'intégrale I_a converge si et seulement si a > -2.

Exercice 40 : En séparant les cas a = b et $a \neq b$, on trouve $I_{a,b} = \frac{\pi}{ab(a+b)}$.

Exercice 41 : En utilisant le changement de variable u = -t, on obtient que

$$I = \int_{-\infty}^{+\infty} \frac{dt}{(1+t^2)^2} = \frac{\pi}{2}.$$

Exercice 42 : On trouve $I = \frac{\pi}{2}$.

Exercice 43 : On trouve $I_a = \frac{1 - (a+1)e^{-a}}{a^2(1 - e^{-a})}$.

Exercice 44 : On trouve $I = \gamma$.

Exercice 45 : On trouve $I = 1 - \gamma$.

Exercice 47 : On trouve $I = \frac{2\pi}{3\sqrt{3}}$.

Exercice 48 : On a $J = \frac{\pi}{4}$ et on trouve $I = K = \frac{\pi}{2\sqrt{2}}$.

Exercice 49 : On trouve $I_a = J_a = \pi/4$.

Exercice 50 : On trouve $I_a = \frac{\pi \ln(a)}{2a}$.

Exercice 51 : On trouve $I = \ln\left(\frac{b}{a}\right)$ et $J = \frac{\pi}{2}\ln\left(\frac{b}{a}\right)$.

Exercice 52:

1. Pour tout $(x, y) \in \mathbb{R}^2$ avec 0 < x < y, on a

$$\int_{x}^{y} \frac{f(at) - f(bt)}{t} dt = \int_{ax}^{bx} \frac{f(t)}{t} dt - \int_{ay}^{by} \frac{f(t)}{t} dt.$$

On en déduit en prenant les limites que $I = (L - \ell) \ln \left(\frac{a}{h} \right)$.

2. En posant $u = \ln(t)$, on obtient que $J = \ln(2)$.

Exercice 53 : On obtient que $J = f(0) \ln \left(\frac{b}{a} \right)$.

Exercice 54:

- 1. Couper l'intégrale en 1 avec la relation de Chasles, puis poser u=1/t dans l'intégrale sur]0,1[.
- 2. En posant u = t 1/t dans l'expression précédente, on obtient que I = J.

Exercice 55:

- 1. Couper l'intégrale en \sqrt{a} avec la relation de Chasles, puis poser u = a/t dans l'intégrale sur $]0, \sqrt{a}[$.
- 2. En posant u = t a/t dans l'expression précédente, on obtient que $I = e^{-2a}J$.

Exercice 56 : En démontrant que l'on a pour tout $x \in [0, 1]$ l'encadrement

$$x^{2}\ln(2) = x^{2} \int_{x}^{x^{2}} \frac{dt}{t \ln(t)} \leqslant F(x) \leqslant x \int_{x}^{x^{2}} \frac{dt}{t \ln(t)} = x \ln(2).$$

On en déduit que $F(1) = \ln(2)$.

Exercice 57 : On trouve $I = J = -\frac{\pi \ln(2)}{2}$.

Exercice 58 : On trouve $I = \frac{3}{4} \ln(3)$.

Exercice 59 : On trouve $I = a\pi$.

Exercice 60 : On trouve $I = a(\ell - \ell')$.

Exercice 67 : Faire une intégration par parties en considérant une primitive de f.

Exercice 68 : Couper l'intégrale en A > 0 suffisamment grand et utiliser l'inégalité de Cauchy-Schwarz sur la seconde intégrale.

Exercice 69 : On a $I_n = n!$ pour tout $n \in \mathbb{N}$.

Exercice 70 : On a $I_{n+1} = \frac{n}{2}I_{n-1}$ pour tout $n \in \mathbb{N}^*$.

Exercice 71 : On a $I_{n,p} = (-1)^p \frac{p!}{(n+1)^{p+1}}$ pour tout $(n,p) \in \mathbb{N}^2$.

Exercice 72 : La suite $(I_n)_{n \in \mathbb{N}^*}$ est constante de valeur $\pi/2$.

Exercice 73 : On a $I_n = \frac{2^{2n+1}(n!)^2}{(2n+1)!}$ pour tout $n \in \mathbb{N}$.

Exercice 74 : On trouve $I_n = \frac{(2n)!}{2^{2n+1}(n!)^2} \pi$.

Exercice 75 : La suite $(2nI_n)$ est constante et $I_n = -\frac{\pi}{4n}$.

Exercice 76 : On trouve $I_{n+2} + I_n = \frac{2I_{n+1}}{\sin(a)}$ et $I_n = \frac{\pi}{\cos(a)} \tan^n(a/2)$.

Exercice 77 : En coupant l'intégrale en 1 et en posant u=1/t dans la seconde intégrale, on trouve

$$I_n = \int_0^1 \frac{1 + u^{n-2}}{1 + u^n} \, \mathrm{d}t.$$

On montre que $I_n - 1 = o(1/n)$ avec des intégrations par parties.

Exercice 78 : En utilisant une intégration par parties, on obtient que $I_n \sim \frac{\ln(n)}{n}$.

Exercice 79 : On trouve $I_0 = \frac{2\pi}{3\sqrt{3}}$ et $I_{n+1} = \frac{3n+2}{3n+3}I_n$. En notant $v_n = \sqrt[3]{n}I_n$, on a que la série de terme générale $\ln(v_{n+1}) - \ln(v_n)$ converge, ce qui permet de conclure.

Exercice 80 : La suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers 0 et on a

$$n + \ln(u_n) = \int_{u_n}^1 \frac{e^t - 1}{t} dt \xrightarrow[n \to +\infty]{} \ell = \int_0^1 \frac{e^t - 1}{t} dt.$$

On en déduit que $u_n \sim e^{\ell - n}$.

Exercice 81: La fonction Arccos' est intégrable sur [0,1], donc

$$\operatorname{Arccos}(x) = \int_{x}^{1} \frac{dt}{\sqrt{1 - t^{2}}} \underset{x \to 1^{-}}{\sim} \int_{x}^{1} \frac{dt}{\sqrt{2(1 - t)}} = \sqrt{2(1 - x)}.$$

Exercice 82: Utiliser une intégration par partie.

Exercice 83 : En utilisant une intégration par parties, on a pour tout $x \in \mathbb{R}$ que

$$f(x) = \int_{x}^{+\infty} e^{-t^{2}} dt = \frac{e^{-x^{2}}}{2x} - \int_{x}^{+\infty} \frac{e^{-t^{2}}}{2t^{2}} dt = \frac{e^{-x^{2}}}{2x} + o(f(x)),$$

donc on a l'équivalent $f(x) \sim \frac{e^{-x^2}}{2x}$.

Exercice 84 : En utilisant une intégration par parties, on a pour tout $x \in \mathbb{R}$ que

$$f(x) = \int_{x}^{+\infty} \frac{e^{-t}}{t} dt = \frac{e^{-x}}{x} - \int_{x}^{+\infty} \frac{e^{-t}}{t^{2}} dt = \frac{e^{-x}}{x} + o(f(x)),$$

donc on a l'équivalent $f(x) \sim \frac{e^{-x}}{x}$.

Exercice 85 : Avec des intégrations par parties, on a pour tout $x \in [1, +\infty[$ que

$$f(x) = \frac{e^x}{x} + \frac{e^x}{x^2} - 2e + 2\int_1^x \frac{e^t}{t^3} dt.$$

De plus, on a avec une autre intégration par parties que

$$\int_{1}^{x} \frac{e^{t}}{t^{3}} dt = \frac{e^{x}}{x^{3}} - e + 3 \int_{1}^{x} \frac{e^{t}}{t^{4}} dt = \frac{e^{x}}{x^{3}} + o \left(\int_{1}^{x} \frac{e^{t}}{t^{3}} dt \right) \underset{x \to +\infty}{\sim} \frac{e^{x}}{x^{3}}.$$

On conclut que

$$f(x) = \frac{e^x}{x} + \frac{e^x}{x^2} + 2\frac{e^x}{x^3} + o\left(\frac{e^x}{x^3}\right).$$

Exercice 86 : On a en $+\infty$ le développement asymptotique

$$\frac{\ln(1+t)}{t} = \frac{\ln(t)}{t} + \frac{1}{t^2} + \varepsilon(t) \quad \text{avec} \quad \varepsilon(t) = o\left(\frac{1}{t^2}\right).$$

On en déduit en intégrant que pour tout $x \in [1, +\infty[$, on a

$$f(x) = \frac{1}{2} \ln^2(x) + 1 - \frac{1}{x} + \int_1^x \varepsilon(t) dt.$$

Pour conclure, il suffit de remarquer que ε est intégrable sur $[1, +\infty[$, donc on a

$$\int_{1}^{x} \varepsilon(t) dt = \int_{1}^{+\infty} \varepsilon(t) dt - \int_{x}^{+\infty} \varepsilon(t) dt = \int_{1}^{+\infty} \varepsilon(t) dt + o\left(\frac{1}{x}\right).$$

Exercice 87 : Avec des intégrations par parties, on a pour tout $x \in [2, +\infty[$ que

$$\operatorname{Li}(x) = \sum_{k=0}^{n-1} \frac{k!x}{\ln^{k+1}(x)} + n! \int_{2}^{x} \frac{\mathrm{d}t}{\ln^{n+1}(t)} + O(1).$$

De plus, on a avec une autre intégration par parties que

$$\int_{2}^{x} \frac{dt}{\ln^{n+1}(t)} = \frac{x}{\ln^{n+1}(x)} + (n+1) \int_{2}^{x} \frac{dt}{\ln^{n+2}(t)} dt + O(1)$$
$$= \frac{x}{\ln^{n+1}(x)} + o\left(\int_{2}^{x} \frac{dt}{\ln^{n+1}(t)}\right) \underset{x \to +\infty}{\sim} \frac{x}{\ln^{n+1}(x)}.$$

On conclut que

$$Li(x) = \sum_{k=0}^{n} \frac{k!x}{\ln^{k+1}(x)} + o\left(\frac{x}{\ln^{n+1}(x)}\right).$$

Exercice 88 : On trouve $f(x) \underset{+\infty}{\sim} 1/(2x)$ et $f(x) \underset{0}{\sim} 1/x$.

Exercice 89 : D'une part, on a pour tout $x \in \mathbb{R}_+^*$ que

$$f(x) = \int_{1}^{x} \frac{dt}{t} + \int_{1}^{x} \frac{\cos^{2}(t) - 1}{t} dt = \ln(x) + O(1) \underset{0^{+}}{\sim} \ln(x).$$

D'autre part, on a pour tout $x \in \mathbb{R}_+^*$ que

$$f(x) = \int_{1}^{x} \frac{1 + \cos(2t)}{2t} = \frac{\ln(x)}{2} + O(1) \underset{+\infty}{\sim} \frac{\ln(x)}{2}.$$

Exercice 90 : Il suffit d'écrire pour tout $x \in \mathbb{R}_+^*$ que

$$f(x) = \int_1^x \frac{dt}{t} + \left(\int_0^1 \frac{1 - \cos(t)}{t} dt - \int_1^{+\infty} \frac{\cos(t)}{t} dt\right) + \int_0^x \frac{\cos(t) - 1}{t} dt.$$

Exercice 91:

2. Pour tout $x \in \mathbb{R}_+^*$, on a

$$0 \leqslant x f(x) \leqslant \int_{x}^{+\infty} t e^{-t^{2}} dt \xrightarrow[x \to +\infty]{} 0.$$

3. En utilisant une intégration par parties, on a

$$\int_0^{+\infty} f(t) dt = [tf(t)]_0^{+\infty} + \int_0^{+\infty} t e^{-t^2} dt = \frac{1}{2}.$$

Exercice 92:

3. On a la majoration

$$0 \leqslant x f(x) = \int_{x}^{+\infty} \frac{x e^{-t}}{t} dt \leqslant \int_{x}^{+\infty} e^{-t} dt \xrightarrow[x \to +\infty]{} 0.$$

4. Il suffit d'écrire pour tout $x \in \mathbb{R}_+^*$ que

$$f(x) = \int_{x}^{1} \frac{dt}{t} + \left(\int_{0}^{1} \frac{e^{-t} - 1}{t} dt + \int_{1}^{+\infty} \frac{e^{-t}}{t} dt \right) - \int_{0}^{x} \frac{e^{-t} - 1}{t} dt.$$

5. En utilisant une intégration par parties, on a

$$\int_0^{+\infty} f(t) dt = [tf(t)]_0^{+\infty} + \int_0^{+\infty} e^{-t} dt = 1.$$

Exercice 93: En utilisant deux intégrations par parties, on a

$$\forall x \in \mathbb{R}_+^*, \quad \int_0^x f(t) \, \mathrm{d}t = 1 - x \int_x^{+\infty} \frac{\cos(t)}{t^2} \, \mathrm{d}t.$$

De plus, en utilisant une nouvelle intégration partie, on obtient que

$$\int_{x}^{+\infty} \frac{\cos(t)}{t^{2}} dt = O\left(\frac{1}{x^{2}}\right) \quad \text{lorsque} \quad x \to +\infty,$$

ce qui permet de montrer que l'intégrale converge et est égale à 1.

Exercice 94: En utilisant deux intégrations par parties, on a

$$\forall x \in \mathbb{R}_+^*, \quad \int_0^x f(t) dt = x \int_x^{+\infty} \frac{\sin(t)}{t^2} dt.$$

De plus, en utilisant une nouvelle intégration partie, on obtient que

$$\int_{x}^{+\infty} \frac{\sin(t)}{t^{2}} dt = O\left(\frac{1}{x^{2}}\right) \quad \text{lorsque} \quad x \to +\infty,$$

ce qui permet de montrer que l'intégrale converge et est égale à 0.

Exercice 96:

1. Pour tout $A \in \mathbb{R}_+^*$, on a avec une intégration par parties que

$$\int_0^A \exp(it^2) dt = \frac{1}{2i} \int_0^A \frac{\exp(it^2) - 1}{t^2} dt.$$

On en déduit que I converge et que Im(I) > 0.

2. En posant $u = \sqrt{x}t$, on obtient que $f(x) \sim \frac{1}{\sqrt{x}}$.

Exercice 98 : En découpant l'intégrale avec les intervalles $[k\pi, (k+1)\pi]$ où $k \in \mathbb{N}$ vérifie k+1 < x et en encadrant, on obtient que $f(x) \underset{+\infty}{\sim} \frac{2\ln(x)}{\pi}$.