___ Espaces vectoriels de ___ dimension finie

Dans tous les exercices, on désigne par $\mathbb K$ le corps $\mathbb R$ ou le corps $\mathbb C$.

Partie I Dimension d'un espace vectoriel

Exercice 1 : Soit $n \in \mathbb{N}$. On note *E* l'ensemble des fonctions $f : \mathbb{R} \to \mathbb{R}$ de la forme

$$\exists P \in \mathbb{R}_n[X], \quad \forall x \in \mathbb{R}, \quad f(x) = P(x)e^x.$$

- 1. Montrer que E est un sous-espace vectoriel de $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- 2. Déterminer la dimension de *F*.
- 3. Montrer que la dérivation induit un automorphisme de *E*.

Exercice 2: Soit $n \in \mathbb{N}^*$. On considère l'ensemble

$$E = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_1 + \dots + x_n = 0\}.$$

- 1. Montrer que E est un sous-espace vectoriel de \mathbb{R}^n .
- 2. Déterminer la dimension de *E*.

Exercice 3: Soit $(n, k) \in \mathbb{N}^2$. On considère l'ensemble

$$E_k = \left\{ P \in \mathbb{R}_n[X] \mid P^{(k)}(1) = 0 \right\}.$$

- 1. Montrer que E_k est un sous-espace vectoriel de $\mathbb{R}_n[X]$.
- 2. Déterminer la dimension de E_k .

Exercice 4 : On note *E* l'ensemble des fonctions 2π -périodiques $f: \mathbb{R} \to \mathbb{R}$.

- 1. Montrer que E est un sous-espace vectoriel de l'espace vectoriel $\mathscr{F}(\mathbb{R},\mathbb{R})$.
- 2. Montrer pour tout $n \in \mathbb{N}$ que la famille $(\cos^0, \cos^1, ..., \cos^n)$ est libre.
- 3. Étudier la dimension de *E*.

Exercice 5 : Soit $n \in \mathbb{N}$. On considère l'ensemble

$$E = \{a_n X^n + \dots + a_0 \in \mathbb{R}_n[X] \mid \forall k \in [0, n], \ a_{n-k} = a_k\}.$$

- 1. Montrer que E est un sous-espace vectoriel de $\mathbb{R}_n[X]$.
- 2. Déterminer la dimension de *E*.

Exercice 6 : Soit $(\alpha, \beta) \in \mathbb{R}^2$. On considère l'ensemble

$$E = \left\{ f \in \mathscr{C}^2(\mathbb{R}, \mathbb{R}) \mid f'' + \alpha f' + \beta f = 0 \right\}.$$

- 1. Montrer que E est un sous-espace vectoriel de l'espace vectoriel $\mathscr{C}^2(\mathbb{R},\mathbb{R})$.
- 2. Déterminer la dimension de *E*.

Exercice 7: On considère l'ensemble des suites arithmétiques

$$E = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \exists r \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ u_{n+1} - u_n = r \right\}.$$

- 1. Montrer que E est un sous-espace vectoriel de l'espace vectoriel $\mathbb{R}^{\mathbb{N}}$.
- 2. Déterminer la dimension de *E*.

Exercice 8 : Soit $p \in \mathbb{N}^*$. On considère l'ensemble

$$E = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+p} = u_n \right\}.$$

- 1. Montrer que E est un sous-espace vectoriel de l'espace vectoriel $\mathbb{C}^{\mathbb{N}}$.
- 2. Déterminer la dimension de *E*.
- 3. Montrer que la famille $((\omega^n)_{n\in\mathbb{N}})_{\omega\in\mathbb{U}_p}$ est une base de E.

Exercice 9 : Soient $n \in \mathbb{N}^*$ et $(x_0, \dots, x_n) \in \mathbb{R}^{n+1}$ tels que $0 = x_0 < x_1 < \dots < x_n = 1$. On définit l'ensemble

$$E = \left\{ f \in \mathscr{F}([0,1],\mathbb{R}) \mid \forall k \in [0,n-1], \quad f_{|[x_k,x_{k+1}]} \text{ est affine} \right\}.$$

- 1. Montrer que E est un sous-espace vectoriel de l'espace vectoriel $\mathscr{F}([0,1],\mathbb{R})$.
- 2. Déterminer la dimension de *E*.

Partie II Sous-espaces vectoriels et dimension finie

Exercice 10 : Soient F, G et H trois sous-espaces vectoriels d'un espace vectoriel E de dimension finie. Montrer que l'on a l'inégalité

$$\dim(F+G+H) \leqslant \dim(F) + \dim(G) + \dim(H)$$
$$-\dim(F \cap G) - \dim(G \cap H) - \dim(H \cap G) + \dim(F \cap G \cap H).$$

Exercice 11: Soient $F_1, ..., F_p$ des sous-espaces vectoriels d'un espace vectoriel E de dimension finie où $p \in \mathbb{N}$ avec $p \ge 2$.

1. Montrer que la somme $F_1 + \cdots + F_n$ est directe si et seulement si

$$\dim(F_1+\cdots+F_p) \leqslant \sum_{k=1}^p \dim(F_k).$$

2. Montrer que somme $F_1 + \cdots + F_p$ est directe si et seulement si l'inégalité précédente est une égalité.

Exercice 12 : Soit E un espace vectoriel sur \mathbb{R} . On considère un couple d'endomorphismes $(u, v) \in \mathcal{L}(E)^2$ tel que $\operatorname{Ker}(u) \cap \operatorname{Ker}(v) = \{0_E\}$.

- 1. Montrer que la somme des sous-espaces vectoriels $\text{Ker}(u + \lambda v)$ pour $\lambda \in \mathbb{R}$ est directe.
- 2. En déduire que si E est de dimension finie, alors il existe un couple $(a, b) \in \mathbb{R}^2$ tel que $au + bv \in GL(E)$.

Exercice 13 : Soit E un espace vectoriel de dimension finie $n \in \mathbb{N}$ avec $n \ge 2$. Montrer que l'intersection de n-1 hyperplans de E est non nulle.

Exercice 14: Soient E un espace vectoriel de dimension finie n et F, G deux sousespaces vectoriels de E de même dimension p < n. Montrer que F et G ont un supplémentaire commun.

Exercice 15 : Soient E un espace vectoriel de dimension finie n et F un sous-espace vectoriel de E. Montrer que F admet au moins deux supplémentaires distincts.

Exercice 16: Soient $F_1, ..., F_r$ des sous-espaces vectoriels d'un espace vectoriel E de dimension finie. On suppose que $E = F_1 + \cdots + F_r$. Montrer qu'il existe des sous-espaces vectoriels $G_1 \subset F_1, ..., G_r \subset F_r$ tels que $E = G_1 \oplus \cdots \oplus G_r$.

Exercice 17 : Soit $u \in \mathcal{L}(E)$ un endomorphisme d'un espace vectoriel E de dimension finie $n \ge 1$. On note

$$\forall p \in \mathbb{N}, \quad I_p = \operatorname{Im}(u^p), \quad N_p = \operatorname{Ker}(u^p).$$

- 1. Montrer que $(I_p)_{p\geqslant 0}$ est décroissante tandis que $(N_p)_{p\geqslant 0}$ est croissante.
- 2. Montrer qu'il existe $s \in \mathbb{N}$ tel que $I_{s+1} = I_s$ et $N_{s+1} = N_s$.
- 3. Soit *r* le plus petit des entiers *s* considérés ci-dessus. Montrer que

$$\forall s \geqslant r$$
, $I_s = I_r$, $N_s = N_r$.

4. Montrer que I_r et N_r sont supplémentaires dans E.

Exercice 18: Soit $u \in \mathcal{L}(E)$ un endomorphisme d'un espace vectoriel E.

- 1. Montrer que si $\operatorname{Ker}(u^{k+1}) = \operatorname{Ker}(u^k)$ avec $k \in \mathbb{N}$, alors $\operatorname{Ker}(u^{k+2}) = \operatorname{Ker}(u^{k+1})$.
- 2. Montrer que si l'endomorphisme u est nilpotent et si l'espace vectoriel E est de dimension finie, alors $u^{\dim(E)} = 0$.
- 3. Soit $\Delta: \mathscr{C}^{\infty}(\mathbb{R},\mathbb{R}) \to \mathscr{C}^{\infty}(\mathbb{R},\mathbb{R})$ l'endomorphisme de dérivation. Existe-t-il un endomorphisme $\delta \in \mathscr{L}(\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R}))$ tel que $\Delta = \delta^2$?

Exercice 19: Soient $u_1, ..., u_n \in \mathcal{L}(E)$ des endomorphismes nilpotents qui commutent deux à deux d'un espace vectoriel E de dimension finie n. On note

$$\forall k \in [0, n-1], \quad F_k = \operatorname{Im}(u_{k+1} \circ \cdots \circ u_n).$$

- 1. Montrer que si $F_k \neq \{0\}$ avec $k \in [0, n-1]$, alors $F_{k+1} \subsetneq F_k$.
- 2. En déduire que $u_1 \circ \cdots \circ u_n = 0$.

Exercice 20: Soit $u \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie. Montrer que les assertions suivantes sont équivalentes.

- (i) On a l'égalité $u^2 = 0$.
- (*ii*) Il existe un projecteur $p \in \mathcal{L}(E)$ tel que $u \circ p = 0$ et $p \circ u = u$.
- (*iii*) Il existe un projecteur $p \in \mathcal{L}(E)$ tel que $u \circ p p \circ u = u$.

Exercice 21 : Soit $f \in \mathcal{L}(E)$ un endomorphisme d'un espace vectoriel E de dimension finie. On note

$$F = \{ g \in \mathcal{L}(E) \mid f \circ g = g \circ f = 0 \}.$$

- 1. Montrer que F est un sous-espace vectoriel de $\mathcal{L}(E)$.
- 2. Soit S un supplémentaire de $\mathrm{Im}(f)$ dans E. Montrer que F est isomorphe au sous-espace vectoriel $\mathscr{L}(S,\mathrm{Ker}\,f)$.
- 3. En déduire la dimension de *F*.

Exercice 22 : Soit $f \in \mathcal{L}(E)$ un endomorphisme d'un espace vectoriel E de dimension finie. On note

$$F_1 = \{g \in \mathcal{L}(E) \mid f \circ g = 0\}$$
 et $F_2 = \{g \in \mathcal{L}(E) \mid g \circ f = 0\}.$

- 1. Montrer que F_1 et F_2 sont des sous-espaces vectoriels de $\mathscr{L}(E)$.
- 2. Montrer que F_1 est isomorphe à $\mathcal{L}(E, \operatorname{Ker}(f))$. En déduire la dimension du sous-espace vectoriel F_1 .
- 3. Soit S un supplémentaire de Im(f) dans E. Montrer que F_2 est isomorphe à l'espace vectoriel $\mathcal{L}(S, E)$. En déduire la dimension de F_2 .

Exercice 23: Soient $u, v \in \mathcal{L}(E)$ des endomorphismes d'un espace vectoriel E de dimension finie.

- 1. Montrer que l'application $\varphi: \mathcal{L}(E) \to \mathcal{L}(E)$ définie par $f \mapsto u \circ f \circ v$ est une application linéaire.
- 2. Soit S un supplémentaire de $\operatorname{Im}(v)$ dans E. Montrer que $\operatorname{Ker}(\varphi)$ est isomorphe à l'espace vectoriel $\mathscr{L}(\operatorname{Im}(v),\operatorname{Ker}(u))\times \mathscr{L}(S,E)$.
- 3. En déduire le rang de φ .

Partie III Familles d'un espace de dimension finie

Exercice 24 : Soit $n \in \mathbb{N}$. On définit

$$\forall k \in [0, n], \quad H_k = \frac{X(X-1)\cdots(X-k+1)}{k!}.$$

- 1. Montrer que $(H_0, ..., H_n)$ est une base de $\mathbb{R}_n[X]$.
- 2. Montrer que $H_k(x) \in \mathbb{Z}$ pour tout $k \in [0, n]$ et tout $x \in \mathbb{Z}$.
- 3. Caractériser les polynômes $P \in \mathbb{R}_n[X]$ tels que $P(x) \in \mathbb{Z}$ pour tout $x \in \mathbb{Z}$.

Exercice 25 : Soit $n \in \mathbb{N}$. On définit $P_k = X^k (1 - X)^{n-k} \in \mathbb{K}[X]$ pour tout $k \in [0, n]$. Montrer que la famille (P_0, \dots, P_n) est une base de $\mathbb{K}_n[X]$.

Exercice 26: Soit $n \in \mathbb{N}$. Pour tout $k \in [0, n]$, on définit

$$P_k = \prod_{\substack{\ell=0\\\ell\neq k}}^n (X - \ell).$$

Montrer que la famille $(P_0, ..., P_n)$ est une base de $\mathbb{K}_n[X]$.

Exercice 27: Soit $\Delta : \mathbb{R}[X] \to \mathbb{R}[X]$ l'application définie par $P \mapsto P(X+1) - P(X)$.

- 1. Montrer que Δ est une application linéaire.
- 2. Soit $P \in \mathbb{R}[X]$. Déterminer le degré de $\Delta(P)$ en fonction du degré de P.
- 3. Montrer que pour tout $P \in \mathbb{R}[X]$ et tout $k \in \mathbb{N}$, on a

$$\Delta^{k}(P) = \sum_{i=0}^{k} (-1)^{k-i} \binom{k}{i} P(X+i).$$

4. Soit $n \in \mathbb{N}$. Déterminer une condition nécessaire et suffisante sur $P \in \mathbb{R}_n[X]$ pour la famille $(P(X), P(X+1), \dots, P(X+n))$ soit une base de $\mathbb{R}_n[X]$.

Exercice 28: Soient $a_0, ..., a_n \in \mathbb{R}$ distincts. Pour tout $k \in [0, n]$, on définit

$$\varphi_k: \mathbb{R}_n[X] \to \mathbb{R}, \quad P \mapsto P(a_k).$$

- 1. Montrer que $(\varphi_0, ..., \varphi_n)$ est une base de $\mathcal{L}(\mathbb{R}_n[X], \mathbb{R})$.
- 2. Montrer qu'il existe $(\lambda_0, ..., \lambda_n) \in \mathbb{R}^{n+1}$ tel que

$$\forall P \in \mathbb{R}_n[X], \quad \int_0^1 P(t) dt = \sum_{k=0}^n \lambda_k P(a_k).$$

Exercice 29: Soit $(m, n) \in \mathbb{N}^* \times \mathbb{N}^*$. On considère une base $(X_1, ..., X_m)$ de l'espace vectoriel $\mathcal{M}_{m,1}(\mathbb{K})$ et une base $(Y_1, ..., Y_n)$ de $\mathcal{M}_{1,n}(\mathbb{K})$. Montrer que la famille

$$\mathcal{F} = \left\{ X_i Y_j \in \mathcal{M}_{m,n}(\mathbb{R}) \mid (i,j) \in [1,m] \times [1,n] \right\}$$

est une base de $\mathcal{M}_{m,n}(\mathbb{K})$.

Exercice 30 : On considère un entier $n \in \mathbb{N}^*$ et un ensemble X. Montrer qu'une famille $(f_1, ..., f_n)$ de $\mathscr{F}(X, \mathbb{K})$ est libre si et seulement si il existe $x_1, ..., x_n \in X$ tels que la famille $(v_1, ..., v_n)$ soit une base de \mathbb{K}^n où

$$\forall k \in [1, n], \quad v_k = (f_1(x_k), ..., f_n(x_k)).$$

Exercice 31 : Soit $f \in \mathcal{L}(E)$ un endomorphisme d'un espace vectoriel E de dimension finie $n \in \mathbb{N}^*$. On suppose qu'il existe un vecteur $a \in E$ de sorte que la famille $(a, f(a), \ldots, f^{n-1}(a))$ soit une base de E. On note

$$C = \{ g \in \mathcal{L}(E) \mid g \circ f = f \circ g \}.$$

- 1. Montrer que C est un sous-espace vectoriel de $\mathcal{L}(E)$.
- 2. Montrer que $C = \text{Vect}(\text{Id}, f, ..., f^{n-1})$.
- 3. Déterminer la dimension de *C*.

Exercice 32: Soit $f \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie.

- 1. Montrer qu'il existe $p \in \mathbb{N}$ tel que la famille (Id, f, f^2, \dots, f^p) soit liée.
- 2. En déduire qu'il existe $P \in \mathbb{K}[X]$ non nul tel que P(f) = 0.
- 3. Montrer que si $f \in GL(E)$, alors il existe $P \in K[X]$ tel que $f^{-1} = P(f)$.

Exercice 33 : Soit $f \in \mathcal{L}(E)$ un endomorphisme nilpotent d'un espace vectoriel E.

- 1. Montrer que si $f^n \neq 0$ pour en entier $n \in \mathbb{N}$, alors il existe un vecteur $x \in E$ tel que la famille $(x, f(x), \dots f^n(x))$ est libre.
- 2. En déduire que si E est de dimension finie, alors $f^{\dim(E)} = 0$.

Exercice 34: Soient *E* un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$ tel que

$$\forall x \in E, \quad \exists n \in \mathbb{N} \quad f^n(x) = 0.$$

- 1. Montrer que f est nilpotent.
- 2. Le résultat est-il-vrai si *E* n'est pas de dimension finie?

Exercice 35 : Soit \mathscr{F} une famille finie de vecteurs d'un espace vectoriel E. Montrer que si \mathscr{G} est une sous-famille de \mathscr{F} , alors on a

$$\operatorname{rang}(\mathcal{G}) \geqslant \operatorname{rang}(\mathcal{F}) + \operatorname{Card}(\mathcal{G}) - \operatorname{Card}(\mathcal{F}).$$

Partie IV Applications linéaires et dimension finie

IV.A - Exercices d'applications

Exercice 36: Soit $n \in \mathbb{N}$. Montrer que

$$\forall P \in \mathbb{R}_n[X], \quad \exists Q \in \mathbb{R}_n[X], \quad P = \sum_{k=0}^n Q^{(k)}.$$

Exercice 37: Soient $n \in \mathbb{N}$ et $a \in \mathbb{R}$. On définit

$$\varphi: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}, \quad P \mapsto (P(a), P'(a), \dots, P^{(n)}(a))$$

Montrer que φ est bijective.

Exercice 38: Soient $a_0, \ldots, a_n \in \mathbb{R}$ distincts. On définit

$$\varphi: \mathbb{R}_n[X] \to \mathbb{R}^{n+1}, \quad P \mapsto (P(a_0), \dots, P(a_n)).$$

Montrer que φ est bijective.

Exercice 39: Soient $a_0, ..., a_n \in \mathbb{R}$ distincts. On définit

$$\varphi: \mathbb{R}_{2n+1}[X] \to \mathbb{R}^{2n+2}, \quad P \mapsto (P(a_0), P'(a_0), \dots, P(a_n), P'(a_n)).$$

Montrer que φ est bijective.

Exercice 40 - Résultant : Soit $A,B \in \mathbb{K}[X]$ deux polynômes non constants. On note $(a,b) = (\deg(A),\deg(B))$ et on définit $\varphi : \mathbb{K}_{b-1}[X] \times \mathbb{K}_{a-1}[X] \to \mathbb{K}_{a+b-1}[X]$ par

$$\forall (U,V) \in \mathbb{K}_{b-1}[X] \times \mathbb{K}_{a-1}[X], \quad \varphi(U,V) = UA + VB.$$

- 1. Montrer que φ est une application linéaire.
- 2. Montrer que φ est bijective si et seulement si $A \wedge B = 1$.

Exercice 41 : Soit $n \in \mathbb{N}$ avec $n \ge 2$. On définit

$$f: \mathbb{R}_n[X] \to \mathbb{R}_n[X], \quad P \mapsto P(X+1) - 2P(X) + P(X-1).$$

- 1. Montrer que f est un endomorphisme de $\mathbb{R}_n[X]$.
- 2. Calculer le degré de $f(X^k)$ pour $k \in [0, n]$.
- 3. Déterminer Ker(f) et Im(f).
- 4. Soit $Q \in \mathbb{R}_{n-2}[X]$. Montrer qu'il existe un unique $P \in \mathbb{R}_n[X]$ tel que

$$f(P) = Q$$
 et $P(0) = P'(0) = 0$.

Exercice 42: Soit $n \in \mathbb{N}$. Pour tout $P \in \mathbb{R}_n[X]$, on définit $\varphi_P : \mathbb{R} \to \mathbb{R}$ par

$$\forall x \in \mathbb{R}, \quad \varphi_P(x) = \int_0^1 (x+t)^n P(t) dt.$$

- 1. Montrer que pour tout $P \in \mathbb{R}_n[X]$, l'application φ_P est polynomiale de degré au plus n.
- 2. Montrer que l'application $\varphi: P \mapsto \varphi_P$ est un automorphisme de $\mathbb{R}_n[X]$.

Exercice 43 : Soit I un intervalle de \mathbb{R} . Déterminer la dimension maximale d'un sous-espace vectoriel F de $\mathscr{F}(I,\mathbb{R})$ constitué uniquement de fonctions de signe constant.

Exercice 44 : Soient I un intervalle de $\mathbb R$ et E un sous-espace vectoriel de $\mathscr F(I,\mathbb R)$ constitué de fonctions monotones.

- 1. Montrer que si *I* est un segment, alors $\dim(E) \leq 2$.
- 2. Montrer que $\dim(E) \leq 2$ sans hypothèse sur I.
- 3. Décrire les sous-espaces vectoriels constitués de fonctions monotones.

Exercice 45: Soit $(f_1, ..., f_n)$ une famille libre de fonctions dérivables de $\mathscr{F}(\mathbb{R}, \mathbb{R})$. Montrer que rang $(f'_1, ..., f'_n) \ge n - 1$.

IV.B - Exercices théoriques

Exercice 46 : Soit $u \in \mathcal{L}(E)$ un endomorphisme d'un espace vectoriel E de dimension finie vérifiant $u^3 = 0$.

- 1. Montrer que rang(u) + rang(u²) \leq dim E.
- 2. Montrer que $2 \operatorname{rang}(u^2) \leqslant \operatorname{rang}(u)$.

Exercice 47: Soit $u \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie. Montrer que les assertions suivantes sont équivalentes.

- (i) On a l'égalité $Ker(u) = Ker(u^2)$.
- (*ii*) On a l'égalité $\text{Im}(u) = \text{Im}(u^2)$.
- (*iii*) On a la décomposition $E = \text{Ker}(u) \oplus \text{Im}(u)$.
- (*iv*) Il existe $v \in \mathcal{L}(E)$ tel que $u \circ v = 0$ et $u + v \in GL(E)$.

Exercice 48 : Soit $f \in \mathcal{L}(E)$ un endomorphisme d'un espace vectoriel E de dimension finie. On suppose que rang(f) = 1.

- 1. Montrer qu'il existe un unique $\lambda \in \mathbb{K}$ tel que $f^2 = \lambda f$.
- 2. Montrer que $\lambda = 1$ si et seulement si $f \text{Id}_E$ n'est pas injective.

Exercice 49: Soit $f \in \mathcal{L}(E, F)$ où E et F sont des espaces vectoriels de dimension finie.

1. Montrer que si *G* est un sous-espace vectoriel de *E*, alors

$$\dim f(G) = \dim G - \dim(G \cap \operatorname{Ker} f).$$

2. Montrer que si H est un sous-espace vectoriel de F, alors

$$\dim f^{-1}(H) = \dim(H \cap \operatorname{Im}(f)) + \dim(\operatorname{Ker} f).$$

Exercice 50 : Soit $\varphi \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de dimension finie. Montrer que $\operatorname{rang}(\varphi) = 1$ si et seulement si il existe une forme linéaire $f \in \mathcal{L}(E,\mathbb{K})$ non nulle et un vecteur $v \in E$ non nul tels que

$$\forall x \in E, \quad \varphi(x) = f(x) v.$$

Exercice 51: Soient $f,g\in\mathcal{L}(E)$ des endomorphismes d'un espace vectoriel E de dimension finie. Montrer que

$$\dim \operatorname{Ker}(g \circ f) \leq \dim \operatorname{Ker}(f) + \dim \operatorname{Ker}(g)$$
.

Exercice 52 : Soient $f,g \in \mathcal{L}(E,F)$ où E et F sont des espaces vectoriels de dimension finie. Montrer que

$$\dim \operatorname{Ker}(f+g) \leq \dim (\operatorname{Ker}(f) \cap \operatorname{Ker}(g)) + \dim (\operatorname{Im}(f) \cap \operatorname{Im}(g)).$$

Exercice 53: Soient $f,g \in \mathcal{L}(E)$ des endomorphismes d'un espace vectoriel E de dimension finie. Montrer que

$$\operatorname{rang}(f+g) = \operatorname{rang}(f) + \operatorname{rang}(g) \quad \Leftrightarrow \quad \begin{cases} \operatorname{Im}(f) \cap \operatorname{Im}(g) = \{0\} \\ \operatorname{Ker}(f) + \operatorname{Ker}(g) = E. \end{cases}$$

Exercice 54: Soit E un espace vectoriel de dimension n.

1. Montrer que si $(f,g) \in \mathcal{L}(E)^2$, alors on a

$$\operatorname{rang}(f) + \operatorname{rang}(g) - \dim E \leqslant \operatorname{rang}(f \circ g) \leqslant \min(\operatorname{rang}(f), \operatorname{rang}(g)).$$

2. Pour tout $(r, s) \in [0, n]^2$, déterminer l'ensemble

$$\mathcal{R}(r,s) = \{ \operatorname{rang}(f \circ g) \mid (f,g) \in \mathcal{L}(E)^2, \operatorname{rang}(f) = r \text{ et } \operatorname{rang}(g) = s \}.$$

Exercice 55: Soient $f, g \in \mathcal{L}(E)$ des endomorphismes d'un espace vectoriel E de dimension finie.

1. Montrer que l'on a l'inégalité

$$|\operatorname{rang}(f) - \operatorname{rang}(g)| \leq \operatorname{rang}(f + g) \leq \operatorname{rang}(f) + \operatorname{rang}(g)$$
.

2. En déduire que si $f \circ g = 0$ et f + g est inversible, alors

$$rang(f) + rang(g) = dim E$$
.

Exercice 56: Soient $u, v \in \mathcal{L}(E)$ des endomorphismes d'un espace vectoriel E de dimension finie tels que

$$Ker(u) + Ker(v) = Im(u) + Im(v) = E.$$

Montrer que les sommes sont directes.

Exercice 57: Soient $u, v \in \mathcal{L}(E)$ des endomorphismes d'un espace vectoriel E de dimension finie tels que

$$u + v = \operatorname{Id}_E$$
 et $\operatorname{rang}(u) + \operatorname{rang}(v) \leq \dim(E)$.

Montrer que u et v sont des projecteurs complémentaires.

Exercice 58 - Inégalité de Frobenius : Montrer que pour tout $(u, v, w) \in \mathcal{L}(E)^3$ où E est espace vectoriel de dimension finie, on a

$$rang(u \circ v) + rang(v \circ w) \leq rang(v) + rang(u \circ v \circ w)$$
.

Exercice 59: Soient $p_1, ..., p_r \in \mathcal{L}(E)$ avec E de dimension finie vérifiant

$$p_1 + \cdots + p_r = \operatorname{Id}_E$$
 et $\forall i \in [1, r], p_i^2 = p_i$.

Montrer que $p_i \circ p_i = 0$ pour tout $(i, j) \in [1, r]^2$ avec $i \neq j$.

Exercice 60 : Soit E un espace vectoriel de dimension finie. On considère un endomorphisme $u \in \mathcal{L}(E)$ tel que $u^r = \mathrm{Id}_E$ pour $r \in \mathbb{N}^*$. On note

$$p = \frac{1}{r} \sum_{k=0}^{r-1} u^k.$$

- 1. Montrer que p est un projecteur sur $Ker(u Id_E)$.
- 2. Montrer que

$$\dim \operatorname{Ker}(u - \operatorname{Id}_E) = \frac{1}{r} \sum_{k=0}^{r-1} \operatorname{tr}(u^k).$$

Exercice 61: Soient E un espace vectoriel de dimension finie et G un sous-groupe fini de GL(E). On note

$$p = \frac{1}{|G|} \sum_{g \in G} g.$$

- 1. Montrer que *p* est un projecteur.
- 2. Montrer que $\operatorname{Im}(p) = \bigcap_{g \in G} \operatorname{Ker}(g \operatorname{Id}_E)$.
- 3. En déduire la relation $Card(G) \operatorname{rang}(p) = \sum_{g \in G} \operatorname{tr}(g)$.

IV.C - Définition d'une application linéaire avec une base

Exercice 62: Soient E et F deux espaces vectoriels de dimension finie. On considère une base $(u_1, ..., u_n)$ de E et on définit l'application $\varphi : \mathcal{L}(E, F) \to F^n$ par

$$\forall f \in \mathcal{L}(E,F), \quad \varphi(f) = (f(u_1),...,f(u_n)).$$

- 1. Montrer que l'application φ est un isomorphisme.
- 2. Déterminer la dimension de l'espace vectoriel $\mathcal{L}(E,F)$.

Exercice 63 : Soit E un espace vectoriel de dimension finie. Montrer qu'il existe un endomorphisme $f \in \mathcal{L}(E)$ tel que $\mathrm{Ker}(f) = \mathrm{Im}(f)$ si et seulement si $\dim(E)$ est pair.

Exercice 64 : Soit $f \in \mathcal{L}(E)$ un endomorphisme d'un espace vectoriel E de dimension finie. Montrer que les assertions suivantes sont équivalentes.

- (i) On a $\operatorname{Im}(f) = \operatorname{Ker}(f)$.
- (*ii*) Il existe une base $(u_1, ..., u_p, v_1, ..., v_p)$ de l'espace vectoriel E tel que

$$\forall k \in [1, p], f(u_k) = 0 \text{ et } f(v_k) = u_k.$$

- (*iii*) On a $f^2 = 0$ et dim(E) = 2 rang(f).
- (*iv*) On a $f^2 = 0$ et il existe $g \in \mathcal{L}(E)$ tel que $f \circ g + g \circ f = \mathrm{Id}_E$.

Exercice 65 : Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E de dimension finie.

- 1. A quelle condition existe-t-il $f \in \mathcal{L}(E)$ tel que f(F) = G?
- 2. A quelle condition existe-t-il $f \in GL(E)$ tel que f(F) = G?
- 3. A quelle condition existe-t-il $f \in \mathcal{L}(E)$ tel que Ker f = F et Im f = G?

Exercice 66: Soit $u \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie. Montrer que u est un élément régulier de l'anneau $\mathcal{L}(E)$, i.e.

$$\exists v \in \mathcal{L}(E), \quad u = u \circ v \circ u.$$

Exercice 67: Soient *E*, *F* et *G* trois espaces vectoriels de dimension finie.

1. Soient $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(E, G)$. Montrer que

$$\operatorname{Ker}(u) \subset \operatorname{Ker}(v) \Leftrightarrow \exists f \in \mathcal{L}(F,G), v = f \circ u.$$

2. Soient $(u, v, w) \in \mathcal{L}(E)^3$. Montrer que

$$\operatorname{Ker}(u) \cap \operatorname{Ker}(v) \subset \operatorname{Ker}(w) \Leftrightarrow \exists (a,b) \in \mathcal{L}(E)^2, \quad w = a \circ u + b \circ v.$$

Exercice 68: Soient *E*, *F* et *G* trois espaces vectoriels de dimension finie.

1. Soient $u \in \mathcal{L}(E,G)$ et $v \in \mathcal{L}(F,G)$. Montrer que

$$\operatorname{Im}(u) \subset \operatorname{Im}(v) \Leftrightarrow \exists f \in \mathcal{L}(E,F), \quad u = v \circ f.$$

2. Soient $(u, v, w) \in \mathcal{L}(E)^3$. Montrer que

$$\operatorname{Im}(w) \subset \operatorname{Im}(u) + \operatorname{Im}(v) \quad \Leftrightarrow \quad \exists (a,b) \in \mathcal{L}(E)^2, \quad w = u \circ a + v \circ b.$$

Exercice 69: Soient $u \in \mathcal{L}(E, F)$ où E et F sont deux espaces de dimension finie.

- 1. Montrer que u est injectif si et seulement si il existe un élément $f \in \mathcal{L}(F, E)$ tel que $\mathrm{Id}_E = f \circ u$.
- 2. Montrer que u est surjectif si et seulement si il existe un élément $f \in \mathcal{L}(F, E)$ tel que $\mathrm{Id}_F = u \circ f$.

Exercice 70 : Soient E et F sont des espaces vectoriels de dimension finie. On considère une application linéaire $f \in \mathcal{L}(E, F)$.

1. Montrer que f est injectif si et seulement si

$$(\forall g \in \mathcal{L}(E), \quad f \circ g = 0 \quad \Rightarrow \quad g = 0).$$

2. Montrer que f est surjectif si et seulement si

$$(\forall g \in \mathcal{L}(F), g \circ f = 0 \Rightarrow g = 0).$$

Exercice 71: Soit $f \in \mathcal{L}(E)$ où E est un espace vectoriel de dimension finie.

- 1. Montrer qu'il existe $(p,g) \in \mathcal{L}(E)^2$ où p est un projecteur et g un isomorphisme tel que $f = g \circ p$.
- 2. Montrer qu'il existe $(p,g) \in \mathcal{L}(E)^2$ où p est un projecteur et g un isomorphisme tel que $f = p \circ g$.

Partie V Formes linéaires

Exercice 72: Soient $f_1, ..., f_p, f \in \mathcal{L}(E, \mathbb{K})$ des formes linéaires sur un espace vectoriel E de dimension finie. Montrer que

$$f \in \text{Vect}(f_1, \dots, f_p) \quad \Leftrightarrow \quad \bigcap_{i=1}^p \text{Ker}(f_i) \subset \text{Ker}(f).$$

Exercice 73: Soient $p \in \mathbb{N}^*$ et $\mathscr{F} = (v_1, ..., v_p)$ une famille de vecteurs d'un espace vectoriel E de dimension finie. On considère l'application

$$\varphi: \mathcal{L}(E, \mathbb{K}) \to \mathbb{K}^p, \quad f \mapsto (f(v_1), \dots, f(v_p)).$$

- 1. Montrer que φ est surjective si et seulement si \mathscr{F} est libre.
- 2. Montrer que φ est injective si et seulement si \mathscr{F} est génératrice.

Exercice 74: Soit $\mathscr{F} = (f_1, \dots, f_p)$ une famille d'éléments de $\mathscr{L}(E, \mathbb{K})$ où E est un espace vectoriel de dimension finie. On considère

$$\varphi: E \to \mathbb{K}^p, \quad x \mapsto (f_1(x), \dots, f_p(x)).$$

- 1. Montrer que φ est surjective si et seulement si \mathscr{F} est libre.
- 2. Montrer que φ est injective si et seulement si \mathscr{F} est génératrice.

Exercice 75 : Soit E un espace vectoriel de dimension finie. Identifier les endomorphismes $\varphi \in \mathcal{L}(E)$ qui stabilise tous les hyperplans de E.

Exercice 76: Soient $n \in \mathbb{N}$ et $a_0, \ldots, a_n \in \mathbb{R}$ deux à deux distincts. On définit

$$\forall i \in [0, n], \quad \varphi_i : E \to \mathbb{R}, \quad P \mapsto P(a_i).$$

- 1. Montrer que $(\varphi_0, ..., \varphi_n)$ est une base de $\mathcal{L}(\mathbb{R}_n[X], \mathbb{R})$.
- 2. Montrer qu'il existe un unique $(\lambda_0, ..., \lambda_n) \in \mathbb{R}^{n+1}$ tel que

$$\forall P \in \mathbb{R}_n[X], \quad \int_0^1 P(t) dt = \sum_{i=0}^n \lambda_i P(a_i).$$

Exercice 77: Soit $n \in \mathbb{N}^*$. Pour tout $A \in \mathbb{R}_n[X]$, on définit $\varphi_A : \mathbb{R}_n[X] \to \mathbb{R}$ par

$$\forall P \in \mathbb{R}_n[X], \quad \varphi_A(P) = \int_0^1 A(t)P(t) dt.$$

- 1. Montrer que φ_A est une application linéaire pour tout $A \in \mathbb{R}_n[X]$.
- 2. Montrer que l'application $\varphi : \mathbb{R}_n[X] \to \mathcal{L}(\mathbb{R}_n[X], \mathbb{R})$ définie par $\varphi(A) = \varphi_A$ pour tout $A \in \mathbb{R}_n[X]$ est un isomorphisme.
- 3. Le résultat de la question 2 est-t-il vrai en remplaçant $\mathbb{R}_n[X]$ par $\mathbb{R}[X]$?

Exercice 78: Soit $n \in \mathbb{N}^*$. Pour tout $M \in \mathcal{M}_n(\mathbb{K})$, on définit $\varphi_M : \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ par

$$\forall N \in \mathscr{M}_n(\mathbb{K}), \quad \varphi_M(N) = \operatorname{tr}(MN).$$

- 1. Montrer que φ_M est une application linéaire pour tout $M \in \mathcal{M}_n(\mathbb{K})$.
- 2. Montrer que l'application $\varphi: \mathcal{M}_n(\mathbb{K}) \to \mathcal{L}(\mathcal{M}_n(\mathbb{K}), \mathbb{K})$ définie par $M \mapsto \varphi_M$ est un isomorphisme.
- 3. Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$. Montrer que les assertions suivantes sont équivalentes.
 - (*i*) Il existe $X \in \mathcal{M}_n(\mathbb{K})$ tel que AX + XA = B.
 - (*ii*) Pour tout $C \in \mathcal{M}_n(\mathbb{K})$ tel que AC + CA = 0, on a tr(BC) = 0.

Partie VI Sous-espaces affines d'un espace vectoriel

VI.A - Généralités

Exercice 79: Soient I, J, K trois points d'un plan affine \mathscr{P} . Montrer que les assertions suivantes sont équivalentes.

- (i) Les points I, J et K sont alignés.
- (*ii*) Il existe un point $M \in \mathcal{P}$ tel que

$$\det(\overrightarrow{MI},\overrightarrow{MJ}) + \det(\overrightarrow{MJ},\overrightarrow{MK}) + \det(\overrightarrow{MK},\overrightarrow{MI}) = 0.$$

(*iii*) Pour tout point $M \in \mathcal{P}$, on a

$$\det(\overrightarrow{MI},\overrightarrow{MJ}) + \det(\overrightarrow{MJ},\overrightarrow{MK}) + \det(\overrightarrow{MK},\overrightarrow{MI}) = 0.$$

Exercice 80 : Dans un plan \mathscr{P} muni d'un repère (O, \vec{i}, \vec{j}) , on considère les trois droites

$$\mathcal{D}$$
: $ax + by = c$, \mathcal{D}' : $a'x + b'y = c'$, \mathcal{D}'' : $a''x + b''y = c''$.

Montrer que \mathcal{D},\mathcal{D}' et \mathcal{D}'' sont parallèles ou concourantes si et seulement si

$$\begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} = 0.$$

Exercice 81 : Soit $\mathscr E$ un espace affine muni d'un repère $(O,\vec i,\vec j,\vec k)$. On considère deux plans non parallèles

$$\mathscr{P}$$
: $ax + by + cz + d = 0$, \mathscr{P}' : $a'x + b'y + c'z + d' = 0$.

Soit $\mathcal{D} = \mathcal{P} \cap \mathcal{P}'$. Montrer qu'un plan \mathcal{Q} contient \mathcal{D} si et seulement si il existe un couple $(\alpha, \beta) \in \mathbb{R}^2$ non nul tel qu'une équation de \mathcal{Q} soit

$$\alpha(ax + by + cz + d) + \beta(a'x + b'y + c'z + d') = 0.$$

Exercice 82: Soient \mathscr{F} et \mathscr{G} deux sous-espaces affines d'un espace affine \mathscr{E} sur \mathbb{R} . Montrer que l'ensemble $\mathscr{F} \cup \mathscr{G}$ est un sous-espace affine de \mathscr{E} si et seulement si on a $\mathscr{F} \subset \mathscr{G}$ ou $\mathscr{G} \subset \mathscr{F}$.

Exercice 83: Soient \mathscr{F} et \mathscr{G} deux sous-espaces affines de dimension finie d'un espace affine \mathscr{E} . On note \mathscr{H} le sous-espace affine engendré par $\mathscr{F} \cup \mathscr{G}$. Déterminer la dimension de \mathscr{H} .

Exercice 84: Dans \mathscr{E} muni d'un repère $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les droites

$$\mathscr{D}: \left\{ \begin{array}{ccc} x-2z & = & 1 \\ y-z & = & 2, \end{array} \right. \mathscr{D}_a: \left\{ \begin{array}{ccc} x+y+z & = & 1 \\ x-2y+2z & = & a. \end{array} \right.$$

- 1. Pour quelles valeurs de $a \in \mathbb{R}$, les droites \mathcal{D} et \mathcal{D}_a sont-elles coplanaires?
- 2. Donner alors l'équation du plan contenant \mathcal{D} et \mathcal{D}_a .

VI.B - Équations affines

Exercice 85 : Soient $\alpha \in \mathbb{K}$ et $(A, B) \in \mathcal{M}_n(\mathbb{K})^2$. Résoudre l'équation

$$\alpha X + \operatorname{tr}(X) A = B, \quad X \in \mathcal{M}_n(\mathbb{K}).$$

Exercice 86 : Soit $A \in \mathcal{M}_n(\mathbb{R})$. Résoudre l'équation

$$X + X^{\top} = \operatorname{tr}(X)A, \quad X \in \mathcal{M}_n(\mathbb{R}).$$

Exercice 87: Résoudre l'équation

$$P(X+1) - 2P(X) + P(X-1) = X, P \in \mathbb{R}[X].$$

— Solutions partielles —

Exercice 10 : Utiliser la formule de Grassmann et $F \cap H + G \cap H \subset (F + G) \cap H$.

Exercice 12 : La démonstration est analogue à celle du lemme des noyaux.

Exercice 13 : En utilisant la formule de Grassmann montrer par récurrence sur l'entier $k \in [1, n-1]$ que l'intersection de k hyperplans de E est un sous-espace vectoriel de E de dimension au moins n-k.

Exercice 14 : Faire une récurrence descendante sur p.

Exercice 16 : Effectuer une récurrence sur *r* .

Exercice 24 : Pour la question 2, on peut effectuer une récurrence sur $k \in \mathbb{N}$ en utilisant la relation $H_k(X+1) - H_k(X) = H_{k-1}(X)$ et $H_k(k) = 1$. Pour la dernière question, il suffit de substituer X par 0, 1, ..., n pour obtenir que les coordonnées de P dans la base $(H_0, ..., H_n)$ sont entières.

Exercice 27 : Pour la dernière question, notons \mathscr{F}_P la famille étudiée. Il est clairement nécessaire que $\deg(P)=n$. Réciproquement, si $\deg(P)=n$, on déduit des questions précédentes que $F=\mathrm{Vect}(\mathscr{F}_P)$ contient $\Delta^k(P)$ pour tout $k\in [0,n]$, donc on a $F=\mathbb{R}_n[X]$. Comme $\mathrm{Card}(\mathscr{F}_P)=\dim(\mathbb{R}_n[X])$, on en déduit que \mathscr{F}_P est une base de $\mathbb{R}_n[X]$.

Exercice 30 : Pour le sens direct, on démontre la contraposée. Le sous-espace vectoriel F de \mathbb{K}^n engendré par les vecteurs $(f_1(x),...,f_n(x))$ pour $x \in X$ n'est par hypothèse pas égal à \mathbb{K}^n , donc il est contenu dans un hyperplan, ce qui permet de conclure.

Exercice 35 : Utiliser la formule de Grassmann.

Exercice 42 : Un polynôme $P \in \mathbb{R}_n[X]$ est dans $Ker(\varphi)$ si et seulement si on a

$$\forall k \in [0, n], \quad \int_0^1 t^k P(t) \, \mathrm{d}t = 0 \quad \Leftrightarrow \quad \forall Q \in \mathbb{R}_n[X], \quad \int_0^1 P(t) Q(t) \, \mathrm{d}t = 0.$$

En prenant Q = P, on conclut que P est le polynôme nul.

Exercice 43 : Supposons qu'il existe une fonction $f \in F$ non nulle et fixons un élément $a \in I$ tel que $f(a) \neq 0$. L'hypothèse sur F implique que le sous-espace vectoriel $D = \{(g(a), g(x)) \in \mathbb{R}^2 \mid g \in F\}$ est de dimension 1 pour tout $x \in I$. On en déduit que f(a)g(x) = g(a)f(x) pour tout $x \in I$, donc F = Vect(f).

Exercice 44:

- 1. Si on note I = [a, b], il suffit de montrer que l'application linéaire $\varphi : E \to \mathbb{R}^2$ définie par $\varphi : f \mapsto (f(a), f(b))$ est injective.
- 2. L'intervalle I est une réunion croissante de segments I_n pour $n \in \mathbb{N}$. Par la question précédente, on a pour tout $n \in \mathbb{N}$ que $F_n = \{f_{|I_n} \mid f \in F\}$ est un espace vectoriel vérifiant $\dim(F_n) \leq 2$. On en déduit qu'il existe un entier $N \in \mathbb{N}$ tel que $\dim(F_n) = \dim(F_N)$ pour tout $n \in \mathbb{N}$ avec $n \geq N$. Finalement, on vérifie que si \mathcal{B} est une famille de F telle que $\mathcal{B}_N = \{f_{|I_N} \mid f \in \mathcal{B}\}$ est une base de F_N , alors $\mathcal{B}_n = \{f_{|I_n} \mid f \in \mathcal{B}\}$ est une base de F_n pour tout $n \in \mathbb{N}$ avec $n \geq N$, puis que \mathcal{B} est une base de F.
- 3. Si *E* ne contient pas la fonction $x \mapsto 1$, alors $E \oplus \text{Vect}(x \mapsto 1)$ est un espace vectoriel ne contenant que des fonctions monotones. On conclut que

$$E = \{0\}, \quad E = \text{Vect}(f) \quad \text{ou} \quad E = \text{Vect}(f, x \mapsto 1)$$

où f est une fonction monotone.

Exercice 45 : Considérer l'application de dérivation sur $Vect(f_1, ..., f_n)$.

Exercice 46 : Appliquer le théorème du rang à la restriction de f à Im(u).

Exercice 47 : Pour montrer que (iii) implique (iv), on peut définir v comme étant le projecteur sur Ker(u) parallèlement à Im(u) et vérifier que $Ker(u+v)=\{0\}$. Pour montrer que (iv) implique (iii), remarquer que dim(E)=rang(u)+rang(v) en utilisant l'inégalité $rang(u+v) \le rang(u)+rang(v)$.

Exercice 51 : Utiliser la restriction de f à $Ker(g \circ f)$.

Exercice 52 : Utiliser la restriction de f à Ker(f + g).

Exercice 57 : Montrer que $E = \text{Ker}(u) \oplus \text{Ker}(v) = \text{Ker}(u) \oplus \text{Ker}(\text{Id}_E - u)$.

Exercice 58 : Appliquer le théorème du rang à u restreint à $\text{Im}(v \circ w)$ et à Im(v).

Exercice 59 : Avec l'hypothèse et la trace, on obtient $E = \text{Im}(p_1) \oplus \cdots \oplus \text{Im}(p_r)$.

Exercice 60 : En utilisant que $p \circ u = p$, on obtient que $\text{Im}(p) = \text{Ker}(u - \text{Id}_E)$. Il suffit de prendre la trace pour obtenir la seconde égalité.

Exercice 61 : En utilisant que $p \circ g = p$ pour tout $g \in G$, on obtient que Im(p) = F. Il suffit de prendre la trace pour obtenir la dernière égalité.

Exercice 64 : Pour définir g, imposer $g(u_k) = g(v_k) = v_k$ pour tout $k \in [1, p]$.

Exercice 67 : Appliquer le résultat de la question 1 à $\varphi = (u, v) \in \mathcal{L}(E, E^2)$.

Exercice 68 : Appliquer le résultat de la question 1 à l'application $\varphi : E^2 \to E$ définie par $\varphi : (x, y) \mapsto u(x) + v(y)$.

Exercice 78 : L'implication directe est évidente. Pour la réciproque, on introduit l'application linéaire $f: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$ définie par f(X) = AX + XA pour toute matrice $X \in \mathcal{M}_n(\mathbb{K})$. L'implication directe montre que $\mathrm{Im}(f) \subset \varphi(\mathrm{Ker}(f))^\circ$. On en déduit la réciproque en montrant que l'inclusion précédente est une égalité en utilisant la dimension.

Exercice 83: On trouve

$$\dim(\mathcal{H}) = \left\{ \begin{array}{ll} \dim(\mathcal{F}) + \dim(\mathcal{G}) - \dim(\mathcal{F} \cap \mathcal{G}) & \text{si} \quad \mathcal{F} \cap \mathcal{G} \neq \emptyset \\ \dim(\mathcal{F}) + \dim(\mathcal{G}) - \dim(\mathcal{F} \cap \mathcal{G}) + 1 & \text{si} \quad \mathcal{F} \cap \mathcal{G} = \emptyset. \end{array} \right.$$

Exercice 84 : Les droites sont coplanaires pour a = -4. Elles sont dans le plan d'équation x - 5y + 3z = -9.