234 - Fonctions et espaces de fonctions Lebesgue-intégrables.

I. Généralités

1. Construction

déf espace L^p , structure espace vectoriel

2. Propriétés

complétude, lemme de Riesz, espace de Banach, th
m convergence dominé dans $L^p,$ exemple et contre-exemple

3. Exemple : l^p

déf espace l^p , inclusion, dual de l'espace l^p , réflexivité, c_o pas réflexif

II. Espaces $L^p(\mathbb{R})$

1. Convolution

déf convolables, L^1 et L^p convolables, L^1 est une algèbre

2. Approximation de l'unité

approximation de l'unité, th
m d'approximation, $C_0^\infty(\mathbb{R})$ est dense dans L^p , exemples

3. Transformée de Fourier dans L^1

déf, propriétés, TF et produit de convolution, inversions, injectivité

4. Transformée de Fourier dans S et L^2

espace de Schwartz, transformée de Fourier dans Schwartz, thm de Plancherel

III. Diverses applications

1. En probabilité

cv en loi, équivalent de prendre $C_0(\mathbb{R})$, thm de Levy, TCL

2. Polynômes orthogonaux

déf, poids, thm orthogonalité, exemples de polynôme orthogonaux

3. Espace de Bergman

déf, produit hermitien, famille orthonormal, base hilbertienne, illustration de th
m de représentation de Riesz

Développements:

- Complétude des L^p
- Espace de Bergman
- Polynômes orthogonaux
- Théorème de Levy et théorème central limite

Bibliographie:

- Faraut, Calcul intégral
- Beck-Malick-Peyré, Agrégation
- Bayen, Espaces de Hilbert et opérateurs
- Zuily, Distributions